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Abstract

We study powers of certain geometric intersection graphs: interval graphs, m-trapezoid graphs
and circular-arc graphs. We define the pseudo product, (G, G′)→ G∗G′, of two graphs G and G′

on the same set of vertices, and show that G∗G′ is contained in one of the three classes of graphs
mentioned here above, if both G and G′ are also in that class and fulfill certain conditions. This
gives a new proof of the fact that these classes are closed under taking power; more importantly,
we get efficient methods for computing the representation for Gk if k ≥ 1 is an integer and
G belongs to one of these classes, with a given representation sorted by endpoints. We then
use these results to give efficient algorithms for the k-independent set, dispersion and weighted
dispersion problem on these classes of graphs, provided that their geometric representations are
given.
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1 Introduction

The subject of this paper is dispersion problems in certain geometric intersection graphs. The
dispersion problem is to select a given number of vertices in a graph so as to maximize the minimum
distance between them. The problem is dual to the maximum k-independent set problem, which
is that of finding a maximum collection of vertices whose inter-vertex distance is greater than a
given bound k. That problem in turn is equivalent to the well-studied maximum independent set
problem on the power graph Gk of the original graph. Thus, in order to give efficient dispersion
algorithms, we are led to study efficient methods for computing k-independent set and methods for
constructing power graphs, as well as to study structural properties of these powers.

In this article we present efficient methods to compute the powers of some geometric intersection
graphs, including interval graphs, circular-arc graphs, and m-trapezoid graphs. The containment
of graph classes under study is as follows. Proper interval graphs, interval graphs, trapezoid
graphs, m-trapezoid graphs, cocomparability graphs, all form one proper containment chain. More
precisely, m-trapezoid graphs are interval graphs when m = 0, trapezoid graphs when m ≤ 1,

∗Computer Science Program, School of Computing, Armstrong Atlantic State University, Savannah, Georgia
31419-1997. geir@armstrong.edu

†Department of Computer Science, Chalmers University, 41296 Göteborg, Sweden. ptr@cs.chalmers.se
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and cocomparability graphs for any m. Similarly, proper circular-arc graphs, circular-arc graphs,
circular m-trapezoid graphs form another chain, and they also properly contain the respective
non-circular class.

These and various other classes of graphs have been shown to be closed under taking power.
This includes cocomparability graphs [6], strongly chordal graphs [17, 5], interval graphs [16], m-
trapezoid and trapezoid graphs [8], circular-arc graphs [9]. For all of these classes, except circular-
arc graphs, the following stronger fact is known that whenever Gk is in the class, then so is Gk+1.

Generally, these proofs of containment do not immediately yield efficient algorithms. This led
us to derive an efficient method for computing the power graph Gk of an interval graph G in time
O(n log k) [2]. We both improve and generalize this result in the present article.

To this end we define the pseudo product (G,G′)→ G ∗G′ for two general graphs on the same
set of vertices. This composition turns out to be commutative, but not associative in general.
However, when we restrict to the class of various powers of a fixed graph, then the pseudo product
is also associative, in fact if s and t are positive integers then Gs ∗Gt = Gs+t.

Our fast power computations lead to efficient algorithms for the dispersion problem in m-
trapezoid, trapezoid, interval, and circular-arc graphs. The problem is defined as follows:

Dispersion

Given: Graph G and integer q.
Find: A set of at least q vertices, such that the minimum distance between the chosen
vertices is maximized.

The generalized version is:

Weighted Dispersion

Given: Graph G with vertex weights w : V (G)→ R, and real number q.
Find: A set of vertices with total weight at least q, with the minimum distance between
the chosen vertices at maximum.

Dispersion is NP-hard for general graphs, since Maximum Independent Set is reducible to it, while
it can be approximated in polynomial time within factor 2, see e.g. [18]. Dispersion restricted to
q = 2 is nothing else than the problem of computing the diameter of G.

There is an obvious relationship between dispersion, k-independent sets and k-th powers of
graphs: Let G be some graph class. If maximum independent sets can be found in polynomial time
in the class of powers of graphs from G then dispersion in G can be solved in polynomial time, too.
If G is closed under taking power, we merely have to compute maximum independent sets in the
k-th power for several k. However the straightforward use of this observation yields Ω(n2) time
dispersion algorithms in such classes G. For faster algorithms we have to avoid explicit insertion of
edges when considering the k-th powers of G, such that fast power computations is exactly what
we need here.

We want to make clear that we always assume that our geometric intersection graphs are given
by their geometric representations, rather than by their edge lists. Thus they are described in
O(n) space, by the extreme points of geometric sets representing the vertices. Without such a
representation, it is impossible to achieve equally fast algorithms for the problems we study. (For
m-trapezoid graphs, already the recognition problem is NP-hard [8, 20].)

We further assume everywhere in this paper that the endpoints of the intervals/arcs/trapezoids
are given in a sorted list. This is common in the literature on algorithms in these classes and allows
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us to derive O(n log n) algorithms for many of these problems. Solving dispersion on interval graphs
is at least as hard as sorting, thus requiring Ω(n log n) time. We note that there are natural cases
where faster sorting is possible. For example, if all endpoints are integers within a range of s, then
intervals can be bucket-sorted in O(n + s) time, which is O(n) if s = O(n).

Only a few subquadratic dispersion algorithms have been provided before: Dispersion is solvable
in O(n) time for trees [3], while weighted dispersion in O(n log n) time for paths [18], and in
O(n log4 n) time for trees [4].

1.1 Outline of paper

In Section 2 we define the pseudo product and apply it to obtain a fast way to compute arbitrary
powers of m-trapezoid graphs. The purpose here is to present the key elements of the pseudo
product. We show that the pseudo product of two m-trapezoid graphs, that fulfill certain conditions,
which are automatically satisfied for interval graphs, is also an m-trapezoid graph.

In Section 3 we use the pseudo product to obtain an O(n log k) algorithm to compute the k-th
power of an m-trapezoid graph on n vertices. Here we view m as a fixed integer that merely defines
our class of m-trapezoid graphs.

In Section 4 we present an O(n) algorithm to compute the k-th power of interval (the case
m = 0) and circular-arc graphs.

Finally, in Section 5 we use the results in previous sections to solve efficiently the k-Independent
Set, or k-IS problem, and the dispersion and weighted dispersion problems for interval graphs,
circular-arc graphs and m-trapezoid graphs.

We use the characterization of dispersion in terms of power graphs: The maximum dispersion
is the largest k such that α(Gk, w) ≥ q, where α denotes the (weighted) independence number of
G.

The following table summarizes the asymptotic complexity of the three problems that we con-
sider on the three geometric classes of graphs, provided that a representation as stated above is
given. In the table, n denotes the number of vertices in G, and lg refers to the usual base-2
logarithm. We assume m is a constant.

Class Power k-IS Dispersion W -Dispersion

Interval n n n n lg k
Circular-arc n n n
Trapezoid n lg k n(lg k + lg lg n) n(lg k + lg lg n) n lg k lg lg n
m-Trapezoid n lg k n(lg k + (lg lg n)m) n(lg k + (lg lg n)m) n lg k(lg lg n)m

In summary, we obtain linear time algorithms for computing arbitrary k-power of interval and
circular-arc graphs, and O(n log k) algorithm for m-trapezoid graphs (m fixed). The computation
of k-IS is equivalent to the power computation, plus the cost of an independent set computation.
Dispersion is obtained by a constant number of k-IS computation in all these graph classes, which
weighted dispersion requires lg k computations of weighted independent sets.

1.2 Notation

We will denote the positive integers {1, 2, 3, . . .} by N, the nonnegative integers {0, 1, 2, . . .} by N0,
the set of real numbers by R, the Cartesian product R×R by R2, and the set of the closed interval
{x : a ≤ x ≤ b} by [a; b]. All graphs we consider are simple unless otherwise stated. For a graph
G the set of its vertices will be denoted by V (G), and the set of its edges by E(G). The open

3



neighborhood of a vertex v in G, that is, the set of neighbors of v not including v, will be denoted
by NG(v). The closed neighborhood of a vertex v in G, that is, the set of neighbors of v, including
v itself, will be denoted by NG[v]. For two vertices u and v in G, the distance between them will be
denoted by dG(u, v) or simply by d(u, v) when unambiguous. We use notation compatible with [19].

Recall for a graph G and an integer k, the k-th power of G is the graph Gk on the same set
of vertices as G, and where every pair of vertices of distance k or less in G are connected by
an edge. Also, a graph G is called the intersection graph of a collection of sets {S1, . . . , Sn} if
V (G) = {v1, . . . , vn} and {vi, vj} ∈ E(G)⇔ Si ∩Sj 6= ∅, for all distinct i, j ∈ {1, . . . , n}. Note that
when G is represented by {S1, . . . , Sn}, then d(Si, Sj) is just the distance dG(vi, vj) between vi and
vj in the intersection graph G.

2 Powers of m-Trapezoid Graphs

In this section we discuss a way to calculate the k-th power of an m-trapezoid graphs efficiently,
and, as a special case, an interval or a circular-arc graph by means of the pseudo product which
we define here below. Recall that any power of an interval graph (resp. circular-arc graph) is again
an interval graph (resp. circular-arc graph) [16, 17, 2].

We start with the definition of the pseudo product for general graphs, a composition that
captivates the essence of powers of graphs, as we will see in Observation 2.2.

Definition 2.1 Let G and G′ be simple graphs on the same set of vertices V (G) = V (G′) = V ,
where |V | = n ≥ 1. Define the pseudo product of G and G′ to be the simple graph G ∗ G′ on the
vertex set V with edge set E(G ∗G′) = E(G) ∪E(G′) ∪E∗ where

E∗ = {{u, v} : ∃w ∈ V : {u,w} ∈ E(G), {w, v} ∈ E(G′),
and ∃w′ ∈ V : {u,w′} ∈ E(G′), {w′, v} ∈ E(G)}.

The word “pseudo” in our definition of the pseudo product of G and G′, is fitting, since if we view ∗
as a group-like operation among all the simple graphs on V , then it is not an associative operation.
In other words, the formula (G∗G′)∗G′′ = G∗ (G′ ∗G′′) does not hold in general. We have however
the following, which is a direct consequence of Definition 2.1.

Observation 2.2 For a simple graph G and nonnegative integers s and t, we have Gs ∗Gt = Gs+t.
In particular, the pseudo product is an associative operation on the set {Gk : k ∈ {0, 1, 2, . . .}} for
any fixed simple graph G.

Assume that for each l ∈ {0, 1, . . . ,m} we have two real numbers, al and bl where al < bl. As
defined in [8], an m-trapezoid T is simply the closed interior of the polygon formed by the points
S = {(al, l), (bl, l) : l ∈ {0, 1, . . . ,m}} ⊆ R2. This means, the left side of the polygon is the chain
of straight-line segments connecting (al, l) and (al+1, l + 1), where l ranges from 0 to m − 1, and
similarly for the right side and numbers bl. The lower and upper boundary of T is the horizontal
line with ordinate 0 and m, respectively. This we denote by T = inter(S). The horizontal lines
with ordinates l ∈ {0, 1, . . . ,m} will be called lanes.

An m-trapezoid graph is a graph G on n vertices {v1, . . . , vn} which is an intersection graph of a
set {T1, . . . , Tn} of m-trapezoids, that is, {vi, vj} ∈ E(G)⇔ Ti ∩ Tj 6= ∅. Let G be an m-trapezoid
graph represented by {T1, . . . , Tn} where each

Ti = inter({(ali, l), (bli, l) : l ∈ {0, 1, . . . ,m}}). (1)
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We will write ãli (resp. b̃li) for the point (ali, l) (resp. (bli, l)) in R2. We say that the left sides of
Ti and Tj cross (or synonymously, intersect) if there are distinct indices p, q ∈ {0, 1, . . . ,m} such
that api < apj and aqi > aqj .

If G and G′ are two m-trapezoid graphs, both on n vertices, represented by sets of m-trapezoids
T = {T1, . . . , Tn} and T ′ = {T ′

1, . . . , T
′
n} respectively, where the left side of Ti and the left side of T ′

i

coincide, that is Ti = inter({ãli, b̃li : l ∈ {0, 1, . . . ,m}}) and T ′
i = inter({ãli, b̃

′
li : l ∈ {0, 1, . . . ,m}}),

for all i ∈ {1, . . . , n}, then we will say that T and T ′ are left-coincidal.
Recall that d(Ti, Tβ) and d(T ′

i , T
′
α) denote the distances between corresponding vertices in G

and G′ respectively. We now put b∗li = maxd(T ′
i ,T ′

α)≤1{blα} and b∗li
′ = maxd(Ti ,Tβ)≤1{b

′
lβ} for each

i ∈ {1, . . . , n} and l ∈ {0, 1, . . . ,m}. With this setup we have the following theorem.

Theorem 2.3 For an integer m ≥ 0 let G and G′ be two m-trapezoid graphs on the same number
of vertices, with left-coincidal representations {T1, . . . , Tn} and {T ′

1, . . . , T
′
n} respectively. Assume

further that for each i we have either b∗li ≤ b∗li
′ for all l ∈ {0, 1, . . . ,m}, or b∗li ≥ b∗li

′ for all
l ∈ {0, 1, . . . ,m}. In this case, the pseudo product G ∗ G′ is also an m-trapezoid graph with an
m-trapezoid representation T ∗ = {T ∗

1 , . . . , T ∗
n}, which is left-coincidal with both T and T ′, and

where the right sides of each T ∗
i are determined by b∗∗li where b∗∗li = max{bli, b

′
li,min{b∗li, b

∗
li
′}}, for

all i ∈ {1, . . . , n} and l ∈ {0, 1, . . . ,m}.

Remarks: (i) In the case m = 0 then Theorem 2.3 reduces precisely to the statement for left-
coincidal interval graphs, for which the additional conditions of the above theorem are automatically
satisfied. That again, can be applied to circular arc graphs in a natural fashion, where we extend
the arcs in a clockwise direction. (ii) In the case where we are considering the pseudo product
Gs ∗ Gt of two powers of the same graph m-trapezoid graph G, then the condition in the above
theorem is satisfied. In fact, we will see in Observation 2.4 here below, that b∗li = b∗li

′ holds then for
each l and i.

Proof. To prove Theorem 2.3 we need to show

{vi, vj} ∈ E(G ∗G′)⇔ T ∗
i ∩ T ∗

j 6= ∅. (2)

In the case where the left sides of Ti and Tj cross, there is nothing to prove, since all the sets Ti∩Tj,
T ′

i ∩ T ′
j and T ∗

i ∩ T ∗
j are then nonempty. Hence we can assume throughout the proof that the left

sides of Ti and Tj do not cross, say ali < alj for all l ∈ {0, 1, . . . ,m}. Furthermore, if {vi, vj} is
either in E(G) or in E(G′) then T ∗

i ∩ T ∗
j 6= ∅ by definition. Hence, we can further assume

ali < bli < alj and ali < b′li < alj (3)

to hold for all l ∈ {0, 1, . . . ,m} throughout the proof.
To prove the “⇒”-direction of (2) assume that {vi, vj} ∈ E(G ∗G′). By definition of E(G ∗G′),

there are vα and vβ such that {vα, vj}, {vi, vβ} ∈ E(G) and {vi, vα}, {vβ , vj} ∈ E(G′). This,
together with (3), means that there are indices p, q ∈ {0, 1, . . . ,m} such that T ′

i ∩T ′
α 6= ∅, apj < bpα,

Ti ∩ Tβ 6= ∅ and aqj < b′qβ.

If b∗pi ≤ b∗pi
′ then we have b∗∗pi = b∗pi ≥ bpα > apj, and hence T ∗

i ∩ T ∗
j 6= ∅.

If however b∗pi ≥ b∗pi
′ then by assumption in the theorem we have that b∗qi ≥ b∗qi

′ also holds and
hence we have b∗∗qi = b∗qi

′ ≥ b′qβ > aqj, which implies that T ∗
i ∩ T ∗

j 6= ∅, thereby completing the
“⇒”-part of (2).
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Now for the other part, assume T ∗
i ∩T ∗

j 6= ∅. By (3) this means that there is an l ∈ {0, 1, . . . ,m}
such that b∗∗li > alj. By definition of b∗li and b∗li

′ we can find α and β such that T ′
i ∩T ′

α 6= ∅, blα = b∗li,
Ti ∩ Tβ 6= ∅ and b′lβ = b∗li

′.
Since now both blα and b′lβ are greater or equal to b∗∗li we have T ′

i ∩T ′
α 6= ∅, blα > alj , Ti∩Tβ 6= ∅

and b′lβ > alj. By our assumption in (3) we have T ′
i ∩ T ′

α 6= ∅, Tα ∩ Tj 6= ∅, Ti ∩ Tβ 6= ∅ and
T ′

β ∩ T ′
j 6= ∅, which implies that {vi, vj} ∈ E(G ∗ G′). This proves the “⇐”-part of (2), thereby

completing our proof. ut

Let us now consider the more special cases of a pseudo product of two powers of a fixed m-trapezoid
graph G. By Observation 2.2 we have that Gs ∗Gt = Gs+t, and hence Theorem 2.3 gives us a way
to obtain the representation of Gs+t directly from the representations of Gs and Gt. In [1] it is
shown that if G is an m-trapezoid graph represented by a set {T1, . . . , Tn} of m-trapezoids (as in
(1)) and k ≥ 1 is an integer, then Gk is represented by m-trapezoids {T1(k), . . . , Tn(k)} which are
given by

Ti(k) = inter({ãli, b̃li(k) : l ∈ {0, . . . ,m}}), (4)

where b̃li(k) = maxd(Tα,Ti)≤k−1{blα}. Although (4) provides a formula for the representation of

Gk from the representation of G, this is not computationally feasible, since the definition of b̃li(k)
is complex from a computational point of view. We are, however, able to compute precisely this
representation much more efficiently, by applying the pseudo product.

Let s, t ≥ 1 be integers, and G a fixed m-trapezoid graph. If Gs and Gt have {T1(s), . . . , Tn(s)}
and {T1(t), . . . , Tn(t)}, respectively, as their representations, then we can get the representation of
the pseudo product Gs+t = Gs ∗Gt, given in Theorem 2.3, by calculating b∗li explicitly and get

b∗li = max
d(Ti(t),Tα(t))≤1

{blα(s)} = max
d(Ti,Tα)≤t

{

max
d(Tα,Tβ)≤s−1

{blβ}

}

= max
d(Ti,Tβ)≤s+t−1

{blβ} = bli(s + t).

In the same way we get that b∗li
′ = bli(s + t), and hence we have in the case for pseudo product

of Gs and Gt that b∗∗li = max{bli, b
′
li,min{b∗li, b

∗
li
′}} = max{bli(s), bli(t), bli(s + t)} = bli(s + t).

Hence, the representation of Gs+t, which we obtain by repeated use of the pseudo product is
{T1(s + t), . . . , Tn(s + t)}, which is identical with the presentation given in (4).

We see from the above that Theorem 2.3 applies when considering various powers of a fixed
graph G, as the following observation shows.

Observation 2.4 If both G and G′ are powers of the same m-trapezoid graph on n vertices, then
b∗li = b∗li

′ holds for all l ∈ {0, 1, . . . ,m} and i ∈ {1, . . . , n}.

Recall that although the pseudo product is not generally an associative operation, it is associative
on the set of powers of a fixed graph G. This means that (Gr ∗ Gs) ∗ Gt = Gr ∗ (Gs ∗ Gt), and
therefore the notion Gr1 ∗ · · · ∗ Grk (k times) is perfectly sensible. Hence, we have the following
corollary.

Corollary 2.5 Let k =
∑s

i=1 2ti be the binary representation of k. For an m-trapezoid graph G

represented by {T1, . . . , Tn}, the representation for Gk = G2t1 ∗ · · · ∗ G2ts
from Theorem 2.3, is

{T1(k), . . . , Tn(k)}, the representation of Gk given in (4).

As we will see in Section 3, this yields an O(n log k) algorithm to calculate the presentation of Gk, if
k ≥ 1 is an integer and G is a fixed m-trapezoid graph. To compute the representation of each G2t

we need to calculate the representation repeatedly no more than t times, using G2i

∗ G2i

= G2i+1

for i from 0 to t− 1. This will be discussed more precisely in the Section 3.
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3 Computing Powers of m-Trapezoid Graphs

In this section we implement the theory of Section 2, to obtain a fast method of computing the
representation of Gk, where k ∈ N and G is an m-trapezoid graph with a given representation.
Let T = {T1, . . . , Tn} and T ′ = {T ′

1, . . . , T
′
n} be two such left-coincidal representations for G and

G′ respectively, as given by (1). Here we shall assume that for each lane l ∈ {0, 1, . . . ,m} the
endpoints ali and bli, where i = 1, 2, . . . , n, have been translated to the set {1, 2, . . . , 2n}.

We want to compute the pseudo product G ∗G′ of two powers of the same m-trapezoid graph,
whose right endpoints are denoted by b∗∗li as in Theorem 2.3. We shall compute a series of m + 1
by 2n matrices Ap, where for p, l = 0, 1, . . . ,m and q = 1, . . . , 2n, the entry Ap[l, q] equals the
rightmost coordinate along lane p among trapezoids T ′

α in G′ with alα ≤ q. Each trapezoid Tα that
intersects Ti must satisfy alα < bli, for some l. Thus, given the values of Ap, we compute b∗∗pi from
Theorem 2.3 by setting b∗∗pi = max{b∗pi

′, bpi} where b∗pi
′ ← maxl∈{0,...,m} Ap[l, bli], which takes m + 1

operations. To compute Ap, we first initialize with zero and insert values for each trapezoid:

for each α ∈ {1, . . . , n} and l ∈ {0, . . . ,m} do
Ap[l, alα]← b′lα

This, together with the zero initialization, uses a total of 2(m + 1)n operations. We can then
complete it in one pass from left to right, using the trivial observations that coordinates to the
left of q − 1 are also to the left of q. That is, we form a prefix maxima of Ap by Ap[l, q] ←
max(Ap[l, q], Ap[l, q − 1]). This second loop also uses 2(m + 1)n operations as l goes through
{0, . . . ,m} and q through {1, . . . , 2n}, so we perform 4(m+1)n operations to compute each matrix
Ap. Thus, the computation of Ap where p ∈ {0, . . . ,m} takes a total of 4(m + 1)2n operations.
Hence, by Observation 2.2 and Theorem 2.3 we have the following.

Theorem 3.1 Given powers Gs and Gt of an m-trapezoid graph G, the power graph Gs+t can be
computed in O(m2n) time.

The given algorithm is easily parallelizable, as the second step is a standard parallel prefix operation.
This gives an optimal O(log n) time O(n) work algorithm on the EREW model [12].

This generalizes the algorithm given in [2] for interval graphs. The same construction holds
also for circular-arc and circular-trapezoid graphs, where the max operator is viewed in modular
arithmetic.

If k ∈ N and k =
∑s

i=1 2ti is its binary representation, then Gk = G2t1 ∗G2t2 ∗ · · · ∗G2ts
. Using

fast multiplication Gk can be computed in at most ts + s − 1 ≤ 2 log k − 1 pseudo products. By
Theorem 3.1 and Corollary 2.5 we have the following.

Corollary 3.2 The representation of Gk where G is an m-trapezoid graph, can be computed in
O(m2n log k) time.

4 Computing Powers of Interval Graphs

and Circular-Arc Graphs

Let G be an interval graph on n vertices, represented by a set IG of n intervals. We may assume
that all the intervals have their 2n endpoints distinct among the numbers {1, 2, . . . , 2n}. For each
interval I ∈ IG there is a unique interval I ′ ∈ IG with the rightmost endpoint of any interval which
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intersects I. This yields a mapping f : IG → IG, defined by f(I) = I ′. This mapping is acyclic
and thus induces a directed forest ~FG on IG (which is a directed tree if G is connected), with a
directed edge from each I ∈ IG to f(I). Note that the root of any tree of ~FG will point to itself.

The representation of Gk can now be obtained quickly: For each interval I = [aI ; bI ] ∈ IG we
obtain an interval I(k) = [aI(k); bI(k)] where aI(k) = aI and bI(k) = bIk

, where Ik is the k-th ancestor

of I in the tree of the above forest ~FG (where the parent of the root is the root itself).
This is computed in a single traversal of the tree. As we traverse the tree, we keep the nodes

on the path from the root to the current node on an indexable stack. This is a data structure
supporting all the stack operation, as well as constant-time indexing of elements in the stack.
Namely, we use an array X, and as we traverse a node I at depth dI , we store it in X[d]. Then,
the root is stored in X[0], and the k-th ancestor of I is stored at X[dI − k], for k ≤ d. We obtain
Ik simply as X(max{dI − k, 0}), and for each node I, we output new interval I(k) obtained by
I(k) = [aI ; bX(max{dI−k,0})].

When G is a circular-arc graph, mapping f is a pseudo forest (or a pseudo tree if G is connected),
i.e. each component contains exactly one cycle, as the number of edges equals the number of vertices.
We must now treat nodes at depth less than k differently. Select any node R on the sole cycle to be
a “root”, and set its depth to be 0. Extend the array X to negative indices, and let X[−1] = f(R)
and generally X[−i] = f (i)(R). We now traverse the tree rooted at R, as before, and set Ik to
be X[dI − k] for each node I of depth dI from R. Otherwise, the process is identical. We have
therefore the following.

Theorem 4.1 Let G be a circular-arc graph with a given representation. For any k, we can
compute the representation of the power graph Gk in O(n) time.

5 k-Independent Set and Dispersion Algorithms

By computing the k-th power of a graph, we reduce the problem of finding a k-Independent Set
or a k-IS for short, (resp. k-Weighted Independent Set or k-WIS for short), to the Maximum
Independent Set or the MIS problem (resp. the Maximum Weighted Independent Set or the MWIS
problem for short) on the corresponding class of graphs, within an additive factor of O(n log k).
The following is known about those problems.

Fact 5.1 MWIS can be computed in O(n) time for interval graphs, and in O(n log log n) time for
trapezoid graphs. MIS can be computed in O(n) time for circular-arc graphs.

For the MWIS result on interval graphs see [13]. The MIS result on circular-arc graphs has been
rediscovered several times [11, 14, 15, 21]. Felsner et al. [7] showed that MWIS of trapezoid graphs
can be computed in O(n log n) time, when the representation is given. Their algorithm uses a data
structure supporting Insert, Delete, Predecessor, and Successor operations of endpoints, and the
complexity is equal to the complexity of n of each of these operations. Under our assumption that
the list of endpoints is given sorted (which could be obtained by O(n log n) preprocessing), we may
assume that all endpoints are integers from 1 to 2n. Then, the data structure of van Emde Boas
supports these operations in log log n steps. Hence, we can compute the MWIS of trapezoid graphs
in O(n log log n) time. Thus we obtain:

Theorem 5.2 k-WIS can be found in O(n) time for interval graphs, and in O(n(log log n+log k))
time for trapezoid graphs. k-IS can be found in O(n) time for circular-arc graphs.
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Proof. By Theorem 4.1 and Corollary 3.2 we can compute the k-th power of an interval graph and
of a trapezoid graph in O(n) time and O(n log k) time, respectively, and MWIS on the k-th power
is equivalent to k-MWIS. This and Fact 5.1 gives the results for these classes. The bound on k-IS
for circular-arc graphs follows similarly. ut

5.1 Dispersion via binary search for k

The following algorithm simply looks for the largest power Gk of G that still admits an independent
set of weight at least q, by repeated doubling followed by binary search. This k is, of course, the
solution to the dispersion problem.

WDisp(G,q)
d← 1, G1 ← G
while (MWIS(Gd) ≥ q)
G2d ← Gd ∗Gd

d← 2d
k ← 0
H ← Gd/2

for (i = d/2; i ≥ 1; i = i/2) do
{ Invariant: H = Gk, MWIS(H) ≥ q > MWIS(H ∗G2i) }
H ′ ← H ∗ Gi

if (MWIS(H ′) ≥ q)
H ← H ′

k ← k + i
output H, k

The time complexity is dominated by the number of computations of maximum (weighted) inde-
pendent sets. Here, it is at most 2 log k. Hence, we have the following.

Theorem 5.3 Weighted Dispersion can be solved in O(n log k) time on interval graphs and O(n log k log log n)
time on trapezoid graphs.

A lower bound of Fredman [10] for maximum increasing subsequences yields a Ω(n log n) lower
bound for finding unweighted IS in permutation graphs, a subclass of trapezoid graphs. Thus, in
the current setup, the dependence on the RAM model is necessary.

5.2 Unweighted dispersion of geometric graphs

For convenience let k-IS(G) denote the size of a minimum k-independent set in graph G. Recall
the notion of a lane from Section 2.

Lemma 5.4 Let G be an m-trapezoid graph, and d be the distance between trapezoids that are
furthest in each direction along some lane. Then bd/(k + 1)c+ 1 ≤ k-IS(G) ≤ bd/(k − 1)c+ 1.

Proof. Let u (resp. u′) be the trapezoid furthest to the left (resp. right) along a given lane, and
let P = 〈u = u0, u1, u2, . . . , ud = u′〉 be a shortest path between u and u′. The set {ui(k+1)|i =
0, 1, 2, . . . , bd/(k + 1)c} then forms a k-IS, thus showing the first part of the claim.
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On the other hand, suppose {v1, v2, . . . , vt} is a k-IS. For each vi, the trapezoid representing
vi intersects some trapezoid representing a node uxi

in the abovementioned path P . Since vi and
vi+1 are of distance at least k + 1, we have that xi+1 ≥ xi + k − 1. It follows by induction that
d ≥ xt ≥ x1 + (t − 1)(k − 1) ≥ (t− 1)(k − 1). Thus, t ≤ bd/(k − 1)c + 1, yielding the second part
of the claim. ut

Theorem 5.5 Let G be an m-trapezoid graph, d be the distance between vertices respectively with
the leftmost and rightmost endpoint along some lane, and K be bd/(q − 1)c. Then, the optimum
dispersion of G is one of the three values {K − 1,K,K + 1}.

Proof. Let OPT be the optimum dispersion of G, i.e. the largest value t such that t-IS(G) ≥ q.
By the definition of K, K(q − 1) ≤ d, and thus by Lemma 5.4, q ≤ bd/Kc + 1 ≤ (K − 1)-IS(G).
That is, OPT ≥ K − 1. By the definition of K, d/(K + 1) < q, so K is the largest number such
that b d

K c ≥ q−1. By Lemma 5.4, q ≤ OPT -IS(G) ≤ bd/(OPT −1)c+1. Thus, OPT ≤ K +1. ut

This can be extended to circular-arc graphs. A greedy covering of the circle is defined as follows:
Start with an arbitrary arc I, add f(I) and let I := f(I), until the whole circle is covered. (Do not
put the initial I in the set.) Such a covering exists unless the graph is actually an interval graph.
Note that a greedy covering is a chordless cycle in the graph and can be computed in O(n) time.
The following result holds by an argument similar to Lemma 5.4.

Lemma 5.6 Let c be the size of a greedy covering of a circular-arc graph G. Then bc/(k + 1)c ≤
k-IS(G) ≤ bc/(k − 1)c.

This can be further extended to circular m-trapezoid graphs. For this, we need a covering of
minimum diameter. Start with an arbitrary trapezoid I, we compute in linear time by dynamic
programming an array d[i, j] containing the trapezoid that extend furthest clockwise on the cycle
along lane j among those of distance i from I. We stop when we have found one that intersects a
trapezoid I ′ in d[1, j], in which case we trace the path backwards to I ′ omitting I.

Theorem 5.7 Let c be the size of a greedy covering of a circular m-trapezoid graph G, and let K
be bc/qc. Then, the optimum dispersion of G is one of the three values {K − 1,K,K + 1}.

The proof follows the lines of Theorem 5.5. On circular-arc graphs, we can compute each k-IS in
linear time, as mentioned earlier. Thus we finally get the following

Corollary 5.8 Dispersion has equivalent complexity as k-IS on interval, circular-arc, m-trapezoid,
and circular m-trapezoid graphs. In particular, it can be computed in O(n(log k+(log log n)m)) time
on m-trapezoid graphs, and in O(n) time on interval and circular-arc graphs.

5.3 Unweighted dispersion of interval graphs revisited

We show here how our representation of interval and circular-arc graphs yields efficient computation
of k-IS for several k.

Lemma 5.9 Let G be an interval graph with nodes sorted by nondecreasing right endpoints. Then,
for any k, k-IS(G) can be found in time O(n(log k)/k), using O(n) precomputation.
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Proof. Recall the directed forest ~FG that G induced, as explained in Section 4. Mark the depth
of each node in its tree. For a node v of depth depth(v), let b(v) be the smallest bit in depth(v)
set to 1. Now, let anc(v) be the ancestor of v of depth depth(v) − 2b(v). It can be computed in
a top down traversal of the tree, when placing nodes on the tree on the indexable stack X, since
anc(v) = X(depth(v)−1) when b(v) = 0, and anc(v) = anc(X(depth(v)−2b(v)−1)) otherwise. Also
mark each node with par(v), the parent of v in the tree.

We additionally compute for each node v, the node u that extends the least to right among
those that have a left endpoint to the right of v. Let next(v) be this interval if it exists, and nil
otherwise. This completes the precomputation needed.

Given anc, we can compute the k-th ancestor anc(v; k) of a node v, by at most log k iterations,
where in each iteration we follow at most 2 log k links of anc and one par link.

The algorithm is simply:

v ←node with leftmost right endpoint
I ← {v}
v ← next(anc(v; k))
while v 6= nil do
I ← I ∪ v
v ← next(anc(v; k))

od

By the foregoing argument, each iteration of the loop runs in O(log2 k) time. There are at most
diam(G)/k iterations. ut

Using binary search, we can use the above to obtain an alternative O(n) algorithm for dispersion
on interval graphs.

Theorem 5.10 Dispersion on interval graphs can be solved in O(n) time.

Proof. We can search for the optimal value k∗ of k using modified binary search. First, find by
linear search the smallest j such that the maximum 2j-independent set of the graph is too small
(i.e. less than q), while the maximum 2j−1-independent set is sufficiently large (i.e. at least q).
Then, use binary search on k within the interval [2j−1, 2j). Namely, this is the same algorithm
as WDisp(G, q), except we don’t compute the product graphs Gk, but compute the k-IS instead
directly. The complexity for the first step is at most

∞
∑

i=1

O(n(log 2i)/2i) = O(n)
∑

i

i/2i = O(n),

and for the second step at most

O(jn(log 2j)/2j) = O(nj2/2j) = O(n).

ut

Acknowledgments

Parts of this work were done while Geir was a Visiting Scholar at Los Alamos National Laboratory
in Los Alamos, New Mexico, Summer of 2000. He is grateful to Madhav Marathe for his hospitality.
We thank Rasmus Pagh for advice.

11



References

[1] G. Agnarsson. On Powers of some Intersection Graphs, Congressus Numerantium, 151:97–107,
(2001).
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