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Abstract
We derive a formula for the chromatic polynomial of a chordal or a
triangulated graph in terms of its maximal cliques. As a corollary
we obtain a way to write down an explicit formula for the chromatic
polynomial for an arbitrary power of a graph which belongs to any
given class of chordal graphs that are closed under taking powers.
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1 Introduction

For a simple graph, recall the following definition.

Definition 1.1 A chord of a cycle C is an edge which is not in C' but has
both its endvertices in C. A graph G is chordal if every cycle of length four
or more in G has a chord in G.

In this article we derive a new form of the chromatic polynomial of a chordal
graph and of a graph whose power is chordal, in an elementary way. Our
form of the chromatic polynomial is in terms of the maximal cliques of the
graph in question. This allows us, in a natural way, to present directly a
formula for the chromatic polynomial of any power graph G* of a graph G
belonging to a class of chordal graphs which is closed under taking arbitrary
powers. These classes include interval graphs and unit interval graphs [g],
strongly chordal graphs [9], m-trapezoid graphs [1], and powers of trees.
It is well known that any power of a tree is chordal [7], [6], so our result
here in particular generalizes Theorem 5.3 in [2]. In fact, any power of a
tree is strongly chordal [6]. A substantial amount of work has been done
on chordal graphs and on these special important subclasses of them. For
a brief overview of recent related results we refer to the introduction of [2].
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Chromatic polynomials have been studied extensively. A recent and
comprehensive bibliography, which contains 472 references on chromatic
polynomials, is given in [5]. As mentioned there in the introduction, the
intention was to make the bibliography as complete as possible.

A considerable part of the articles published are about chromatic poly-
nomials of some very specific graphs. Some other articles have appeared
on chromatic polynomials of chordal graphs and subclasses of them. We
mention two relevant articles: In [4], in which the chromatic polynomial of
various types of chordal graphs is studied, it is shown that chordal graphs
are chromatically equivalent to threshold and unit interval graphs. In [11]
it is shown that a graph G without any subgraphs isomorphic to K4, the
complete graph on four vertices, is chordal if, and only if, its chromatic
polynomial has the form #(¢t — 1)™(¢t — 2)", where m > 1 and r > 0 are
some integers. It is however well known that the chromatic polynomial of
a chordal graph always takes the form t(t — 1)1 (¢t — 2)72 -+ (t — ¢ + 1)Ja-1,
where ¢ is the clique number of the graph, and the j,’s are integers [3].
Before we state our main results and proofs of them, we need to define our
basic notation and recall some useful definitions.

The set {1,2,3,...} of natural numbers will be denoted by N. All graphs
considered in this article are assumed to be simple unless otherwise stated.
For a graph G and a vertex v of G, we denote by N[v| the closed neigh-
borhood of v in G, that is the set of all neighbors of v in G together with v
itself. Likewise, we denote by N(v) the open neighborhood of v in G, that
is the set of all neighbors of v in G. For k € N, the power graph G* is a
graph with the same vertex set as G, but where every pair of vertices of
distance k or less in G are connected by an edge in G*. For m € N we let
[m] denote the set {1,...,m}, and (t),, = t(t —1)--- (¢ — m + 1) be the
falling factorial polynomial in ¢ of degree m. Denote by x(G) the chromatic
number of the graph G. The chromatic polynomial of G will be denoted
by xc(t). It describes the number of proper vertex colorings G has using
at most t > x(G) colors.

Recall that a graph G is chordal if, and only if, it has a simplicial

elimination ordering of the vertices, V(G) = {v1,...,v,}, such that for
each vertex v; the set N(v;) N {v1,...,v;—1} induces a clique in G, see [12,
p. 226).

2 The Main Results

In this section we derive our main results. We start with the following
useful fact from [10, Theorem 3:

Lemma 2.1 For a graph G with subgraphs H and K, such that G = HUK



and HN K s a clique, we have
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This can now be generalized as follows:

xa(t)

Corollary 2.2 For a graph, which is a union of cliques G = Q1U- - -UQn,
where Q1 N (Q1 U ---UQg) is a clique for each k € {1,...,m — 1}, let
qs = | Npeg @kl and (t)s = (t)qs for each S C [m]. Then
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Proof. We use induction on m. If G = Q)1 is a clique then the formula is
clearly correct.
For m > 1 we have by Lemma 2.1 that
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where G’ = Q1 U---UQy,_1. By the induction hypothesis we have
xe)= [ &7 (2)
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We now have G' N Q. = (Q1 N Q) U+ -+ U (Qm—1 N Q) and moreover

(Qe+1NQm) N[(Q1 N Q) U+ U(Qr N Q)]
= [Qk+1 N (Ql U---u Qk)] N Qm;

which is an intersection of two cliques, and hence a clique itself. Therefore
by induction hypothesis we have
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Putting (2) and (3) in (1), bearing in mind that @, is a clique of size gy,
we finally get
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proving our corollary. O



The next lemma provides a proof of the fact that our assumption in
Corollary 2.2 is valid for every chordal graph. It is a direct consequence of
the fact that a chordal graph has a simplicial elimination ordering. At each
step we establish a clique among the previous neighbors, but only some of
these cliques are maximal.

Lemma 2.3 For a chordal graph G let Qg be the set of all the distinct
maximal cliques of G. We have G = UQEQG Q and if |Qg| = m then there
is a labeling

QG:{Qla---an}
such that Qr+1 N (Q1U---UQy) is a clique for every k € {1,...m — 1}.

Proof.  We use induction on n = |V (G)|. For n =1 the statement is clearly
true.

Assume G to be a chordal graph and n > 2. Let V(G) = {v1,...,v,}
be a simplicial elimination ordering, and let Qg = {Q1,...,Qm} be a
labeling where Q,, is a maximal clique in G containing the vertex wv,,.
Since G(N[v,]) is a maximal clique containing v, we must have Q,, =
G(NJv,]), and hence @y, is the unique maximal clique containing v,,. Since
Q1,...,Qm—1 are all maximal cliques in G which do not contain v,,, then
they are also distinct maximal cliques in the chordal graph G \ {v,}. Now,
Q. = QmN(G\{v}) = G(N(vy,)) is also a clique in Gj this clique is clearly
not maximal in G. However, @, is either maximal clique in G \ {v,} or
not.

If @), is a maximal clique in G \ {v,} then

G\ {vn}=Q1U---UQn-1UQ),

is a distinct union of all the maximal cliques in G \ {v,}. By the induction
hypothesis we can assume Qr11 N (Q1 N --- N Q) is a clique for all i €
{1,...,m—2}, and also that @, N (Q1U---UQm—1) is a clique. Since v,
is not contained in any of Q1,...,Qm,—1, we have

QmN(QU-UQm-1)=Q,N(Q1U--UQn_1)

which is therefore a clique in G. Since G = Q1 U ---U Q,,, we have proven
the theorem in this case.

Assume now that @/, is not a maximal clique in G\{v,,}. Then @/, must
be contained in some maximal clique Q" of G \ {v,}. Since Q" is a clique
in G, then Q" must be contained in one of the maximal cliques Q1,...,Qm
of G. If Q" C @, we have Q), C Q" C @, and hence Q" = @,
contradicting the fact that Q” is a maximal clique in G \ {v,,} which does
not contain v,. Therefore, ) is contained in one of the maximal cliques



Q1,...,Qm—1. Hence Q1,...,Q_1 is the complete list of maximal cliques
of G\ {v,} and

G\ {v,} =Q1U- UQp_1UQ,, =Q1U--UQp-_1.

Again by induction hypothesis we can assume the labeling to be such that
Qr+1N(QLU---UQy) is a clique for each i € {1,...,m — 2}. But now we
have in addition

QN (Q1U-UQm-1) = Qm N (G\{vn}) = G(N(vn))
which is indeed a clique in G, and we have the theorem in this case also. O

Theorem 2.4 For a chordal graph G with mazimal cliques Q1,...,Qn let
(t)s be as in Corollary 2.2 for each S C [m]. Then

xalt) = H (t)g—l)\sm.
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Proof. By Lemma 2.3 there is a permutation o : [m] — [m] such that
Qo(k+1) N (Qo1) U+ -UQu k) is a clique for each k € {1,...,m—1}. Since
o is bijective it yields a bijection ¢ : P([m]) — P([m]) by ¢(S) = {o(k) :
k € S} for each S C [m]. By Corollary 2.2 we therefore have
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proving our theorem. ]

REMARK: It is well known that a given simplicial elimination ordering
{v1,...,v,} of a chordal graph G yields the following form for the chromatic
polynomial of G,

n
va(t) =[] dti),

i=1
where d(i) = |N(v;) N {v1,...,v;—1}|. This is a direct consequence of the
product rule for counting the number of ways one can color the first vertex
v1, then the second vertex vo, and so on, finally coloring the last vertex
Un, see [12, p. 224]. This formula however depends on the given simplicial
elimination ordering.

For our last result, we need the definition of a k-ball of a graph.

Definition 2.5 For a graph G and k € N, we define a k-ball as a set
B C V(G), such that every two vertices of B are of distance k or less from
each other in G.



Assume now that we have a graph G and a number k € N, such that G*
is chordal. Clearly a k-ball in G becomes a clique in G* and vice versa, a
clique in G* is a k-ball in G. Thus, there is a 1-1 correspondence between
k-balls of G and cliques in G*. Just as for chordal graphs, if By, ..., B,
is the complete list of all the maximal k-balls of a graph G, which is such
that G* is chordal, we let bg = |(),c 5 Bi| and likewise (t)s = (¢)54 for each
S C [m]. With this in mind, we get from Theorem 2.4 that we can directly
write down the chromatic polynomial of G*.

Theorem 2.6 Let G be a graph and k € N such that G* is chordal. If
By, ..., By, is the complete list of all the mazimal k-balls of G then

xee) = [T @507
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In particular, since T* is a chordal graph for any tree T and k € N, we see
that Theorem 2.6 here above generalizes Theorem 5.3 in [2].

Corollary 2.7 Let G be a class of chordal graphs which is closed under
taking arbitrary powers. Keeping the notation as in Theorem 2.6 we have
for any G € G and any k € N that

xee) = [T @5V
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