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Abstract

Let m ≥ 2 be an integer. We say that a poset P = (X,�) is m-partite if X has a partition
X = X1 ∪ · · · ∪Xm such that (1) each Xi forms an antichain in P, and (2) x ≺ y implies x ∈ Xi

and y ∈ Xj where i, j ∈ {1, . . . , m} and i < j. If P is m-partite for some m ≥ 2, then we
say it is multipartite. – In this article we discuss the order dimension of multipartite posets in
general and derive tight asymptotic upper bounds on the order dimension of them in terms of
their bipartite sub-posets.
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1 Introduction

This article was partly inspired by a question asked by Reinhard Laubenbacher [11] which casually
can be phrased as follows: “For a given collection of posets, form a new poset by stacking them
together, putting one on top of the other. Is it possible to bound the order dimension of the newly
formed poset in terms of the order dimension of the given posets?” A precise definition of order
dimension is given later in Section 2. Laubenbacher’s motivation were posets that appeared in
the following manner: When finitely many agents A1, . . . , An are investigated over discrete times
t = 0, 1, . . . ,m, one obtains a poset consisting of the n(m+1) elements Ai(t), where a directed edge
from Ai(t) down to Aj(t+ 1) is present if, and only if, agent Ai has influenced agent Aj during the
time interval from t to t + 1. This resulting induced poset is sometimes called the influence poset
among the agents. Note that here the maximal chains can have any length ` ∈ {1, . . . ,m} and that
minimal and maximal elements can be at any time level t.

Other more familiar posets can also be viewed as stacked sub-posets, one on top of the other: If
FP is the face lattice of an n-dimensional polytope P and FP (i, i + 1) is the height-2 sub-poset of
FP consisting of the i and (i + 1)-dimensional faces of P , then FP can be thought of being formed
by stacking FP (1, 2) on top of FP (0, 1), FP (2, 3) on top of FP (1, 2) and so on, finally stacking
FP (n − 1, n) on top of FP (n − 2, n − 1). In this case the stacking appears naturally since FP is a
graded poset provided with a grading function into the nonnegative integers, that maps each face
of P (i.e. each element of the poset FP ) to its dimension. (For more on graded posets see [15]
and [13].) Determining the order dimension of face lattices of convex polytopes is hard. Some
partial yet interesting results in this direction appear in [12] and later in [1]. Of particular interest
is the face lattice of the standard n-simplex when viewed as the subset lattice of {1, . . . , n}. If we
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let [n] = {1, . . . , n} and
([n]

k

)

denotes all the k-element subsets of [n], then the power set P([n]) of

all subsets of [n] can be partitioned into n + 1 disjoint sets P([n]) =
(

[n]
0

)

∪
(

[n]
1

)

∪ · · · ∪
(

[n]
n

)

. For

0 ≤ k1 < k2 ≤ n denote the poset on
([n]

k1

)

∪
([n]

k2

)

induced by inclusion by P(k1, k2;n). Hence,
as a poset, P([n]) can be thought of being formed by stacking the n posets P(i, i + 1;n) for
i ∈ {0, 1, . . . , n − 1} one on top of the other. Investigating the order dimension dim(k1, k2;n) of
such sub-posets P(k1, k2;n) of P([n]) for 1 ≤ k1 < k2 ≤ n−1 is currently an active area of research,
in particular the investigation of dim(1, k;n), the order dimension of the poset P(1, k;n). We list
and briefly discuss a few related and celebrated results of this ongoing investigation:

In [2] an explicit formula for dim(1, k;n) is given when 2
√

n−2 ≤ k < n−1 and in [17] the exact
values of dim(1, 2;n) are given for 2 ≤ n ≤ 13. In [9] and [5] the exact values for dim(2, n−2;n) and
dim(k, n−k;n) are given, provided that certain conditions hold for k and n. In [14] the asymptotic
behavior of dim(1, k;n) is given as a function of n when k is considered fixed. Finally, in [8] a
direct method to determine dim(1, 2;n) for each n is given. Hence, the case k = 2 for determining
dim(1, k;n) is the only case which can be considered completely solved. In [6] an O(∆(log ∆)2)
upper bound is given for the order dimension of a poset, in which the number of elements comparable
to any fixed element is at most ∆. The proof of this uses probabilistic methods, something that has
turned out to be of great value for many asymptotic problems regarding order dimensions. In [10]
however, it is shown by contradiction that dim(1, log n, n) = Ω(log3 n/ log(log n)). In addition,
all the upper bounds derived there are proved by explicit construction, which therefore is also an
effective method in providing bounds for order dimensions.

In what follows we will discuss a class of posets that will include the class of graded posets and
the posets obtained by such “stacking” as mentioned above in an ad hoc manner. Our methods will
be elementary and constructive. In addition, they will yield simpler proofs of well-known results.

2 Definitions and basic properties

By a poset P we will always mean an ordered tuple P = (X,�) where � is a reflexive, antisymmetric
and transitive binary relation on X. Unless otherwise stated X is always assumed to be a finite set.
We will for the most part try to be consistent with the standard notation from [18]. In particular,
if two elements x, y ∈ X are incomparable in P, then we write x ‖ y. By min(P) and max(P) we
mean the set of minimal and maximal elements of P respectively. As originally defined in [3] and
as stated in [18], the order dimension of P = (X,�), denoted by dim(P), is the least number d ∈ N

of linear extensions �1, . . . ,�d of � that realize �. This means that for x, y ∈ X we have x � y in
P iff x �i y for all i ∈ [d].

For n ∈ N, any collection S of points in the n-dimensional Euclidean space R
n naturally forms

a poset (S,�E) by
x̃ �E ỹ ⇔ xi ≤ yi for each i ∈ [n],

for any x̃ = (x1, . . . , xn) and ỹ = (y1, . . . , yn) from S. With this in mind we have the following.

Observation 2.1 Let P = (X,�) be a poset. Its order dimension dim(P) is the least d ∈ N such
that there is an injective homomorphism φ : P → R

d satisfying x � y ⇔ φ(x) �E φ(y) for all
x, y ∈ X.

By a suitable translation, we may assume the the homomorphism φ from Observation 2.1 maps
into R

d
+, where every coordinate is positive. Hence, we see that d = dim(P) is the least positive
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integer such that P can be represented as a collection of d-dimensional boxes in R
d where each

x ∈ X is represented by the box spanned by the origin and φ(x) (each side of the box is parallel
to one of the d axes of R

d), and where the partial order is given by the corresponding containment
order. (For more on geometric containment orders in general see [4].)

Determining the exact value of the order dimension of a poset is a hard computational problem.
Even when we restrict to height-2 posets, the problem of computing their order dimensions is
NP-complete [19].

Assume that P has n elements, X = {x1, . . . , xn}, and denote the standard basis for R
n by

{ẽ1, . . . , ẽn}. Consider φ : P → R
n given by

φ(xi) =
∑

x`�xi

ẽ`. (1)

If for any i, we let D[xi] = {x` ∈ X : x` � xi} be the closed downset of xi in P, then for any
i, j ∈ [n] we clearly have xi � xj ⇔ D[xi] ⊆ D[xj] and hence xi � xj ⇔ φ(xi) �E φ(xj), showing
that φ is an injective homomorphism. We summarize in the following.

Observation 2.2 For a poset P = (X,�) with X = {x1, . . . , xn}, the map φ from (1) is an
injective homomorphism into R

n. In particular, we always have dim(P) ≤ |X|.
Remark: A theorem by Hiraguchi [7],[18],[13] states that the above Observation 2.2 can be im-
proved by a factor of 1/2 so that dim(P) ≤ |X|/2 for all posets P with |X| ≥ 4. Moreover, for each
n ∈ N the “standard example” S2n from [3] and [18, p. 12], of a height-2 poset on 2n elements with
order dimension of n, shows that the upper bound of Hiraguchi is tight as a function of |X|. The
standard example S2n is in fact the poset P(1, n − 1;n) mentioned earlier in Section 1. However,
the proof of Hiraguchi’s tight upper bound is non-constructive and not completely trivial. The
good thing about Observation 2.2 is that it is constructive and yields a direct n×n zero-one matrix
representation of a poset P = (X,�) with X = {x1, . . . , xn}, where each row i is given by φ(xi)
from (1).

3 Multipartite posets

In this section we address what can be said in general about the order dimension of a given poset
in terms of its levels or induced sub-bipartite posets. We start with the following example that
answers the question of Laubenbacher from Section 1 in the negative.

Example: For n ∈ N let A = {a1, . . . , a2n}, B = {b1, . . . , b2n} and C = {c1, . . . , c2n} be
pairwise disjoint sets. Let Pa be the height-2 poset on A∪B where ai � bi+` for each i ∈ [2n] and
` ∈ {0, . . . , n − 1}, computed cyclically modulo 2n. Likewise let Pb be the same height-2 poset on
B ∪ C where bi � ci+` for each i ∈ [2n] and ` ∈ {0, . . . , n − 1} modulo 2n. Form the poset Pa,b on
A∪B∪C where the partial order is induced by those of Pa and Pb. Note that both Pa and Pb are
order isomorphic to the “generalized crown” Sn−1

n+1 introduced by Trotter in [16]. There and in [18,
p. 36] a closed formula for the order dimension dim(Sk

n) is given. In particular we have

dim(Pa) = dim(Pb) = dim(Sn−1
n+1) =

⌈

4n

n + 1

⌉

= 4.

However, we note that the poset Pa,b contains the standard example S2n as an induced sub-poset,
when restricted to the set A ∪ C, and hence dim(Pa,b) ≥ 2n. We summarize in the following
observation.
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Observation 3.1 There is no function f : N × N → N such that

dim(P) ≤ f(dim(P1),dim(P2))

holds in general for all posets P, which are induced by two sub-posets P1 and P2 with min(P1) =
max(P2).

The following elementary lemma is a direct consequence of the interpolation property for posets [18,
p. 21] and the fact that each poset has a linear extension.

Lemma 3.2 Let P be a poset and P′ be an induced sub-poset of P. Then any linear extension L′

of P′ can be extended to a linear extension L of P.

Recall that a bipartite poset [18, p. 46] is an ordered triple P = (X,Y ;�) where X and Y are
disjoint and x ≺ y implies that x ∈ X and y ∈ Y . Note that any bipartite poset yields a unique
height-2 poset, but not vice versa since isolated elements can be regarded as minimal or maximal
but not both in a bipartite poset.

Definition 3.3 Let m ≥ 2 be an integer and X1, . . . , Xm be disjoint nonempty sets. We call
P = (X1, . . . , Xm;�) an m-partite poset if � is a partial order on X = X1 ∪ · · · ∪ Xm such that
(1) each Xi forms an antichain w.r.t. �, and (2) x ≺ y implies x ∈ Xi and y ∈ Xj where i, j ∈ [m]
and i < j. If P is m-partite for some m, then P is a multipartite poset.

Clearly, each m-partite poset P yields its underlying poset P◦ = (X1 ∪ · · · ∪ Xm,�) by ignoring
the partition. The order dimension of P is then defined to be that of P◦.

Note that if P = (X,�) is a poset with |X| = n, then the number of ways P can be made into
a n-partite poset is the number of linear extensions of P. If n′ > n, then P cannot be made into a
n′-partite poset.

If P = (X,�) is a graded poset with a surjective grading function g : X → [m], then P can
naturally be made into an m-partite poset P′ = (X1, . . . , Xm;�) where Xi = g−1(i) for each
i ∈ [m].

Slightly more generally, if a poset P = (X,�) has a partition X = X1 ∪ · · · ∪Xm such that � is
induced by a collection of bipartite posets Pi = (Xi, Xi+1;�i) for each i ∈ [m − 1], then P is also
an m-partite poset. Here we have x ≺ y in P iff there is a sequence x = xi ≺ xi+1 ≺ · · · ≺ xj−1 ≺
xj = y, where each xk ∈ Xk and xk ≺k xk+1.

In fact, for any poset P = (X,�) the rank function (mapping each element to the length of
the longest chain with that element as its largest element) will make P into an m-partite poset for
some m. Here m′ = m + 1, the height of P, is the smallest possible m′ such that P can be made
into an m′-partite poset.

Remarks: (i) Note that the three examples above increase slightly in generality. (ii) Many
authors confuse the notion of a grading with that of a rank. This distinction is made clear in the
excellent book by Bernd S. W. Schröder [13].

Example: Consider the poset P = (X,�) with X = {a, b, c, d, e} where � is induced by
the two chains d ≺ c ≺ b ≺ a and d ≺ e ≺ a. From P we can obtain two 4-partite posets
P′ = ({d}, {c, e}, {b}, {a};�) and P′′ = ({d}, {c}, {b, e}, {a};�) with P as their underlying poset.
Here P′ is given by the partition that the rank function yields. Further, P has no grading function
and is therefore not a graded poset.
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Let P = (X1, . . . , Xm;�) be an m-partite poset and Pi,j be the bipartite sub-poset of P induced
by Xi ∪Xj for each i < j with i, j ∈ [m]. As we saw in the example preceding Observation 3.1, we
cannot hope to express dim(P) in terms of the dim(Pi,i+1)’s for i ∈ [m − 1], the order dimensions
of these consecutive layers in P. More is needed.

For each i, j ∈ [m] with i < j let di,j = dim(Pi,j) and Li,j be a collection of di,j linear orders on
Xi ∪ Xj realizing Pi,j. By Lemma 3.2 there is a set L∗

i,j of di,j linear orders extending P and each
linear order in Li,j. By considering both cases of x ‖ y, where x, y ∈ Xi for some i on one hand,
and x ∈ Xi, y ∈ Xj for some i 6= j on the other, we can see that R =

⋃

i<j L∗
i,j realizes P. This

shows that we can bound dim(P) in terms of the dim(Pi,j)’s. We summarize in the following.

Observation 3.4 For a multipartite poset P = (X1, . . . , Xm;�) we have

dim(P) ≤
∑

i<j

dim(Pi,j).

For an m-partite poset P let B(P) = maxi<j{dim(Pi,j)}. Since there are
(

m
2

)

= m(m−1)/2 posets
Pi,j we obtain

B(P) ≤ dim(P) ≤ m(m − 1)

2
B(P),

and hence for a fixed m, we have dim(P) = Θ(B(P)). This can be reduced by a factor of 1/2 in
the following theorem.

Theorem 3.5 For a multipartite poset P = (X1, . . . , Xm;�) we have

B(P) ≤ dim(P) ≤ (m − 1)(m + 3)

4
B(P).

Proof. Note that if i1 < j1 < i2 < j2 < · · · < i` < j` are indices from [m] and Lk is a linear
extension of Pik ,jk

, then a linear extension of P that includes L1 ≺ L2 ≺ · · · ≺ L` extends P and
each of the Lk. In this way we can find 2 · B(P) linear orders extending P and each Li,j ∈ Li,j,
where i + 1 = j. In general, for each k ≤ b(m + 1)/2c there are k · B(P) linear orders extending
P and each Li,j, where i + k − 1 = j. There are however 1 + 2 + · · · + (m − b(m + 1)/2c) ways
of choosing a pair i < j with j − i ≥ b(m + 1)/2c. Therefore the total number of linear orders
extending P and each Li,j ∈ Li,j for all i < j, will not exceed

[(

2 + 3 + · · · +
⌊

m + 1

2

⌋)

+

(

1 + 2 + · · · +
(

m −
⌊

m + 1

2

⌋))]

· B(P)

≤ (m − 1)(m + 3)

4
B(P).

Hence we have the theorem. ut

To better understand the asymptotic behavior of dim(P) of an m-partite poset P, define f(m) for
each m ≥ 2 by

f(m) = sup
P

{

dim(P)

B(P)

}

, (2)

where the supremum is taken over all m-partite posets P. By Theorem 3.5 we therefore have that
f(m) ≤ (m − 1)(m + 3)/4.

For the lower bound of f(m), we start with the following lemma.
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Lemma 3.6 Let g, h, k ∈ N with h, k ≥ 2 and g ≤ min{h, k}. Let M ⊆ [h] × [k] be any matching
of size g between the columns and rows of [h] × [k]. For disjoint sets X = {x1, . . . , xh} and
Y = {y1, . . . , yk} let C−g(h, k) be the poset on X ∪ Y given by xi ≺ yj for all (i, j) ∈ [h] × [k] \ M .
Then dim(C−g(h, k)) = max{2, g}.

Proof. Assume g ≥ 2. By a suitable permutation we may assume that M = {(1, 1), . . . , (g, g)}.
Since the poset induced by {x1, . . . , xg} ∪ {y1, . . . , yg} is the standard example S2g we have that
dim(C−g(h, k)) ≥ g.

Let Lx denote the linear order x1 ≺ x3 ≺ x4 ≺ · · · ≺ xh−1 ≺ xh ≺ x2 and similarly let Ly

denote y1 ≺ y3 ≺ y4 ≺ · · · ≺ yk−1 ≺ yk ≺ y2. If i ∈ [h] then Lx(̂i) denotes the linear order obtained
from Lx by removing xi and similarly for Ly(ĵ). For any linear order L let Lop denote the opposite,
or reverse, linear order of L. In this case C−g(h, k) is realized by the following g linear orders

Lx(1̂)op ≺ y1 ≺ x1 ≺ Ly(1̂),

Lx(ˆ̀) ≺ y` ≺ x` ≺ Ly(ˆ̀)
op for ` ∈ {2, . . . , g}.

Hence dim(C−g(h, k)) ≤ g. The case g = 1 gives in similar fashion dim(C−1(h, k)) = 2. ut

Note that C−g(h, k)) is the complete bipartite poset on X and Y except for the g relations xi ≺ yj

where (i, j) ∈ M .

Theorem 3.7 For m ≥ 2 we have that f(m) defined in (2) satisfies

f(m) ≥ m2 − 1

4
.

Proof. For d, h, k ≥ 2 let A = {xi,j : (i, j) ∈ [dh]× [dk]} and B = {yi,j : (i, j) ∈ [dh]× [dk]} be two
disjoint sets of d2hk elements each. Let P = (A ∪ B;�) be given by

xi1,j1 ≺ yi2,j2 ⇔ (i1, j1) 6= (i2, j2).

Here P is the standard example on 2d2hk elements so dim(P) = d2hk. Let X1, . . . , Xh, Y1, . . . , Yk

be given by Xp = {xi,j : (i, j) ∈ {(p−1)d+1, . . . , pd}× [dk]} for each p ∈ [h] and Yq = {yi,j : (i, j) ∈
[dh]×{(q−1)d+1, . . . , qd}} for each q ∈ [k]. This partition of A∪B makes P into a (h+k)-partite
poset (X1, . . . , Xh, Y1, . . . , Yk;�). We note that each of Xp ∪ Xq and Yp ∪ Yq is an antichain in P

of order dimension two. Since the sub-poset of P induced by Xp ∪ Yq is C−d2(d2k, d2h) we have by
Lemma 3.6 that B(P) = d2. Hence we have

f(h + k) ≥ dim(P)

B(P)
=

d2hk

d2
= hk.

Putting (h, k) = (n, n) on one hand and (h, k) = (n, n + 1) on the other yields a lower bound for
f(m) both for even and odd m. Hence, we have the theorem. ut

Note that the example provided in the above proof of Theorem 3.7 shows that both dim(P) and
B(P) can be arbitrarily large.

By Theorems 3.5 and 3.7 we have the following.
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Corollary 3.8 If f(m) is the function from (2) then for all m ≥ 2 we have

m2 − 1

4
≤ f(m) ≤ (m − 1)(m + 3)

4
.

By Corollary 3.8 we have limm→∞
f(m)
m2 = 1

4 , so the bounds given in Corollary 3.8 are asymptotically
tight.

By imposing some additional conditions on the multipartite partite poset, conditions that many
familiar graded posets satisfy, we can obtain much better bounds on the order dimension than
obtained in Theorem 3.5.

Definition 3.9 Let P = (X1, . . . , Xm;�) be an m-partite poset. We say that P has the incompa-
rable cover property (ICCP) if for every incomparable pair x ‖ y of P, there is an x ′ ∈ X1 and
y′ ∈ Xm such that (1) x′ ≤ x, (2) y′ ≥ y and (3) x′ ‖ y′.

Note that x′ and y′ are necessarily minimal and maximal elements of P respectively.

Theorem 3.10 If an m-partite poset P has the ICCP, then

dim(P) = B(P) = dim(P1,m).

Proof. Let dim(P1,m) = d1,m and L1,m be a realizer of P1,m containing d1,m linear orders on
X1 ∪ Xm. By Lemma 3.2 there is a set L∗

1,m of d1,m linear orders extending P and each linear
order in L1,m. Restricting each linear order in L∗

1,m to Xi ∪Xj we obtain a collection of d1,m linear
orders, which by the ICCP is a realizer of Pi,j for each i < j. Hence we have the theorem. ut

Example: Consider a graded poset P = (X,�) with a grading function g : X → [4]. If Xi = g−1(i),
we have a partition X = X1∪X2∪X3∪X4 making P into a 4-partite poset. If P has the ICCP, then
by the above Theorem 3.10 and Hiraguchi’s theorem (from the remark right after Observation 2.2)
we have

|X1| + |X4|
2

≥ dim(P1,4) = dim(P) ≥ dim(P2,3).

Hence, any graded poset P with 2 dim(P2,3) > |X1| + |X4| does not satisfy the ICCP.

For an n-dimensional polytope P let FP be its face lattice. For an integer vector k̃ = (k1, . . . , km)
with 1 ≤ k1 < k2 < · · · < km < n, let FP (k̃) denote the face sub-poset of FP induced by the ki-
dimensional faces of P for all i ∈ [m]. With this setup we have the following.

Theorem 3.11 For every n-dimensional polytope P and each k̃ with 1 ≤ k1 < k2 < · · · < km < n,
then FP (k̃) has the ICCP.

Proof. Let H1, . . . ,Hp be the hyperplanes in R
n that bound P . Note that each k-face Fk of P is

determined by exactly n − k of the hyperplanes Fk = P ∩ Hi1 ∩ · · · ∩ Hin−k
.

Let F ′ and F ′′ be two incomparable faces of P with dim(F ′),dim(F ′′) ∈ {k1, . . . , km}. Then
there is a 0-face F0 = {u} such that u ∈ F ′ \F ′′. Let F ′′ = P ∩Hi1 ∩· · ·∩Hin−k

where k = dim(F ′′).
Since u 6∈ P ∩Hi1 ∩· · ·∩Hin−k

there must be a hyperplane, say Hi1 that does not contain the point
(i.e. vertex) u. In this case we have u 6∈ Fn−1 := P ∩Hi1 so F0 ⊆ F ′ and F ′′ ⊆ Fn−1 where F0 and
Fn−1 are incomparable in FP (k̃). Therefore FP (k̃) has the ICCP. ut
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For integers 1 ≤ k1 < k2 < · · · < km < n denote by P(k1, . . . , km;n) the sub-poset of P([n]) that
consists of the union of all ki-element subsets of [n] where i ∈ [m]. Since P([n]) is the face lattice
of the standard n-simplex we have by Theorem 3.11 the following.

Corollary 3.12 P(k1, . . . , km;n) has the ICCP.

By Theorem 3.10 and Corollary 3.12 it is immediate that dim(P(1, . . . , n − 1;n)) = dim(P(1, n −
1;n)) = n, since P(1, n − 1;n) is the standard example S2n. Note that here we avoided the use
of Dilworth’s Chain Decomposition Theorem (product version) which is the standard way to show
that dim(P(1, . . . , n − 1;n)) = n [13, p. 171,232].

For a poset P = (X,�) let ∆(P) = maxx∈X |{y ∈ X : y � x or y � x}|, that is, the maximum
number of elements that are comparable to a single element. A celebrated result in [6] states that
dim(P) ≤ 50∆(P)(log ∆(P))2.

If 1 ≤ k1 < k2 < n, we have that in the poset P(k1, k2;n) each maximal element (i.e. a k2-
set) is comparable to exactly

(

k2

k1

)

+ 1 other elements and each minimal element (i.e. a k1-set) is

comparable to exactly
(

n−k1

k2−k1

)

+ 1 elements. Also, note that the function f : [n] → N given by
f(k) = k!(n − k)! satisfies f(k) = f(n − k) and is decreasing for the first half of the numbers k
among [n] and increasing for the second half. From this we see that ∆(P(k1, k2;n)) =

(

k2

k1

)

+ 1 if,
and only if, k1 + k2 ≤ n. Hence we have

∆(k1, k2) := ∆(P(k1, k2;n)) =

{

(

k2

k1

)

+ 1 if k1 + k2 ≤ n,
(

n−k1

k2−k1

)

+ 1 if k1 + k2 ≥ n.
(3)

In particular, by Theorem 3.10, Corollary 3.12 and the above we get that

dim(k1, . . . , km;n) = dim(k1, km;n) ≤ ∆(k1, km)(log ∆(k1, km))2, (4)

where ∆(k1, km) is defined as in (3). Hence, the mere reason that we obtain an upper bound in (4)
solely as a function of ∆(k1, km) instead of ∆(P(k1, . . . , km;n)), is given by Theorem 3.11.
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