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Abstract

A reflexive graph is a simple undirected graph where a loop has been added at each vertex.
If G and H are reflexive graphs and U ⊆ V (H), then a vertex map f : U → V (G) is called
nonexpansive if for every two vertices x, y ∈ U , the distance between f(x) and f(y) in G
is at most that between x and y in H . A reflexive graph G is said to have the extension
property (EP) if for every reflexive graph H , every U ⊆ V (H) and every nonexpansive vertex
map f : U → V (G), there is a graph homomorphism φf : H → G that agrees with f on
U . Characterizations of EP-graphs are well known in the mathematics and computer science
literature. In this article we determine when exactly, for a given “sink”-vertex s ∈ V (G), we
can obtain such an extension φf ;s that maps each vertex of H closest to the vertex s among all
such existing homomorphisms φf . A reflexive graph G satisfying this is then said to have the
sink extension property (SEP). We then characterize the reflexive graphs with the unique sink
extension property (USEP), where each such sink extensions φf ;s is unique.
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1 Introduction

The problem of determining whether or not vertex maps can be extended to graph homomorphisms
is quite natural and has been discussed extensively in both the mathematics and computer science
literature. The problems addressed and solved in this article were inspired by some partial results
from [4], [5] and [6]. Although not written in the language of graphs and their homomorphisms,
the main results of [4], [5] and the parts of [6] that are relevant to this article, turn out to be special
cases of celebrated results from [13] and [8]. These results can also be found in the recent excellent
books [12] and [14]. To the best of the author’s knowledge, the problems solved in this article, to
characterize SEP-graphs and USEP-graphs (see Definitions 3.1 and 3.2 in Section 3 below), have
not been discussed elsewhere. We will in this article for the most part use the notation and names
from [12] for the sake of consistency.

The study of extending vertex maps to graph homomorphisms is inseparable from that of
retracts of graphs (see definition in the next Section 2). We will now briefly discuss some highlights
of this ongoing study of graph retracts:

It is generally believed that graph retracts were first studied in a comprehensive way in the 70s
first by Pavol Hell [10], [11], then a little later by Ivan Rival and Richard Nowakowski [18], [19].
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Some highlights of later contributions in this discussion includes that of [13] a paper from which
the discussion in [12] on retracts is partly based on, [15] where retracts from a metric point of view
is discussed, [1] on retracts in bipartite graphs and [16], where the “holes” are discussed. There,
a hole is precisely what Helly graphs do not have (see definition of the Helly property in the next
Section 2). When exactly cycles are retracts of planar graphs is determined in [27], and in [26] the
Helly property is used on posets. A game theoretic approach involving cops and robbers is taken
in [20]. Further studies of absolute retracts from a chromatic point of view is presented in [24].
Retracts of posets is studied in [7] and [8]. Further studies of retracts are given by Erwin Pesch
in [21], [22] and [23]. The more computational aspect of determining when a given graph is a retract
is given in [3] and [9]. In [25] the retract is studied from the more classical graph-contraction point
of view.

The rest of this article is organized as follows: In Section 2 we introduce our notation, basic
definitions and recapitulate some known relevant results. Sections 3 and 4 contain the main results
of this article, namely Corollary 3.14 and Theorem 4.6. More specifically, in Section 3 we show that
we can extend a vertex map to a homomorphism that further maps everything as close to a given
sink-vertex as possible. Finally, in Section 4 we determine for which graphs the homomorphism
discussed in Section 3 is unique.

2 Definitions, notation and recap of related results

Here in this section, we present our notation, terminology, and basic definitions. We also state and
recapitulate some known results closely related to what we consider and use in following sections.
There are numerous nice published directly related results, but since the notation is non-standard
it can be difficult to parse through and clearly see what implies what. Hence, it seems worthwhile
to briefly discuss these results here in this section in terms of the notation that we will be using.
Most of the following terminology definitions and results can be found in [12] and also some in [14].
In addition, we refer to [12, 2.13 Remarks] and [14, 5.6 Notes] for more detailed discussion on the
history and origin of the results presented here in this section. We start with the notation and
basic definitions:

The natural numbers {1, 2, . . .} will be denoted by N and for k ∈ N the set {1, . . . , k} will be
denoted by [k]. For a set S, the set of all k-element subsets of S will be denoted by

(S
k

)
. A simple

graph G is an ordered pair (V (G), E(G)) where V (G) is a finite set of vertices and E(G) ⊆
(V (G)

2

)

is the set of edges of G. A reflexive graph is a simple graph G where we have added a loop at each
vertex. Hence, the edge set E(G) of a reflexive graph can be viewed as a subset of the disjoint union(V (G)

1

)
∪

(V (G)
2

)
that contains

(V (G)
1

)
. In this article a graph is always either simple or reflexive.

The distance between vertices x and y in G, denoted by dG(x, y), is the minimum number of edges
in a path between x and y in G. A homomorphism φ : H → G is a tuple φ = (φV , φE) where
φV : V (H) → V (G) and φE : E(H) → E(G) are maps that satisfy the compatibility condition
φE({x, y}) = {φV (x), φV (y)}. Note that the edge map φE is completely determined by vertex map
φV . When there is no danger of ambiguity we will write φ(x) instead of φV (x) for a vertex x and
similarly for an edge. Note also that for any x, y ∈ V (H) we have dG(φ(x), φ(y)) ≤ dH(x, y). Let
H and G be graphs and U ⊆ V (H). A vertex map f : U → V (G) is nonexpansive (NE) if for
all x, y ∈ U we have dG(f(x), f(y)) ≤ dH(x, y). Note that if H and G are reflexive graphs then,
φ : H → G is a homomorphism if, and only if, φV : V (H) → V (G) is an NE-map. For simple
graphs H and G however, a vertex map θ : V (H) → V (G) is an NE-map if, and only if, we have
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the following.

For all x, y ∈ V (H) : {x, y} ∈ E(H) ⇒ {θ(x), θ(y)} ∈ E(G) or θ(x) = θ(y). (1)

Maps satisfying (1) have been called weak homomorphisms of simple graphs in the literature
(see [14].) Note that if we add a loop at each vertex of the graph G, thereby obtaining the reflexive
graph G′, a weak homomorphism θ : H → G is equivalent to a homomorphism θ ′ : H → G′.

Definition 2.1 A reflexive graph G has the extension property (EP) if for every reflexive graph
H, every U ⊆ V (H) and every NE-map f : U → V (G) there is a homomorphism φf : H → G that
agrees with f on U .

It should be clear how the EP can be modified for simple graphs. In [14, p. 152] it is shown that a
simple graph with the Helly property (see definition here below) has the EP. Further, a complete
characterization of such simple Helly-graphs is also given there. For a graph G, a quotient graph
of G, denoted by G/σ, is a graph with σ as vertex set, where σ is a set partition of V (G), and
where {S, S ′} is an edge in G/σ iff there is an edge {x, y} ∈ E(G) with x ∈ S and y ∈ S ′. For each
quotient G/σ we have a natural surjective homomorphism p : G → G/σ. A graph G is a retract
of H if G is a subgraph of H and there is a homomorphism r : H → G the restriction of which to
G ⊆ H is the identity homomorphism of G. Note that if r : H → G is a retraction then, for every
x, y ∈ G we have dG(x, y) = dG(r(x), r(y)) ≤ dH(x, y), but since trivially dH(x, y) ≤ dG(x, y) for
any subgraph G of H, we have here that

dG(x, y) = dH(x, y) for any x, y ∈ V (G). (2)

A subgraph G of H satisfying (2) is called isometric. A graph G is an absolute retract if G is a
retract of every graph H in which it is an isometric subgraph of. For a graph G and a nonnegative
integer `, a set NG

` [x] = {z ∈ V (G) : dG(x, z) ≤ `} is called a closed ball or a closed neighborhood
of G. A graph G is said to have the Helly property if every collection of closed balls in G, the
intersection of each pair of which is nonempty, has a nonempty intersection. The following nice
characterization stems from [13] and is given in [12].

Theorem 2.2 A reflexive graph is an absolute retract if, and only if, it has the Helly property.

In view of the above Definition 2.1 we have in fact the following:

Observation 2.3 For a reflexive graph G the following are equivalent:

1. G has the EP.

2. G is an absolute retract.

3. G has the Helly property.

Although the equivalence in Observation 2.3 is known and can be obtained by a combination of
theorems and such from [14] and [12], we conclude this section however by a simple, algebraic and
self contained proof of the missing part of Theorem 2.2, that a reflexive graph has the EP if, and
only if, it is an absolute retract:
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Proof. (Obs. 2.3) First assume that G is an isometric subgraph of H and that G has the EP. In
this case the identity map V (G) → V (G) is an NE-map which, by the EP of G, can be extended
to a homomorphism r : H → G, showing that G is a retract of H.

Conversely, for reflexive graphs H and G, a vertex set U ⊆ V (H) and a vertex map f : U →
V (G), let (H + G)/f denote the quotient of the disjoint union of H and G where we have for each
x ∈ U identified f(x) with x. More specifically, in the partition of the disjoint union of V (G) and
V (H) that the map f induces, each x ∈ V (H) \ U and each y ∈ V (G) \ f(U) is a singleton set in
the partition, whereas for each y ∈ f(U) the set Sy = {y} ∪ f−1(y) makes up a non-singleton set
of the partition.

Lemma 2.4 If f : U → V (G) is an NE-map, then (H+G)/f contains G as an isometric subgraph.

Proof. It is clear that (H + G)/f contains G as a subgraph. Let x, y ∈ V (G) be given and
P = (x0, x1, . . . , xk) be a shortest x, y-path in (H + G)/f that has the fewest possible edges from
E(H) \E(G). If P contains no edge in E(H) then k = dG(x, y) and we are done. Otherwise, there
is a sub-path P ′ = (xi, . . . , xj) of P with i < j and xi, xj ∈ U containing an edge from E(H)\E(G)
that lies entirely in the image of H in (H + G)/f . Since f is an NE-map there is however another
path P ′′ starting at xi and ending at xj with length at most that of P ′ and that lies in the image
of G in (H +G)/f . Replacing P ′ by P ′′ in P we obtain a x, y-path in (H +G)/f of length at most
k, but with fewer edges from E(H) \ E(G). This contradicts our choice of P and completes the
argument. ut

Assume now that G is an absolute retract. Let H be a reflexive graph, U ⊆ V (H) and f : U → V (G)
a NE-map. By Lemma 2.4 there is retraction r : (H + G)/f → G. In this case φf : H → G defined
by

H
p
→ (H + G)/f

r
→ G,

(where p denotes the natural projection), agrees with f on U . This completes our proof. ut

Although a priori a different and seemingly a more restrictive definition, graphs with the EP turn
out to be precisely the absolute retracts. In the next sections we will continue in this manner by
studying two sub-classes of reflexive graphs satisfying the EP and describing them completely.

3 On graphs satisfying the SEP or the USEP

In this section we discuss two stronger conditions than the EP. We study whether or not we can
impose the additional condition on our extending homomorphism that it maps all the vertices
closest to a given sink-vertex among all existing extensions of our given NE-map, and whether or
not such an extension homomorphism is unique.

For reflexive graphs G and H and s ∈ V (G) there is always a homomorphism φs : H → G
such that for every homomorphism φ : H → G and every vertex x ∈ V (H) we have dG(φs(x), s) ≤
dG(φ(x), s), namely by letting φs(x) = s for each x ∈ V (H). However, if we require that both φ
and φs extend a given NE-map f : U → V (G) for some U ⊆ V (H), then such a trivial choice for
our φs is clearly not an option.

Definition 3.1 Let G be a reflexive graph with the EP and s ∈ V (G). For H a reflexive graph,
U ⊆ V (H) and f : U → V (G) an NE-map, an extending homomorphism φf ;s : H → G of f
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is called a s-sink extension (s-SE) if dG(φf ;s(x), s) ≤ dG(φf (x), s) for all x ∈ V (H) and for all
homomorphisms φf extending f . If every f can be extended to an s-SE, then G has the s-sink
extension property (s-SEP). If G has the s-SEP for every s ∈ V (G) then G has the sink extension
property (SEP).

Note that if G has the SEP and s ∈ V (G), H, U ⊆ V (H) and NE-map f : U → V (G) are given,
then for each x ∈ V (H) the nonnegative integer m(x) = minf{dG(φf (x), s)} is unique, namely
dG(φf ;s(x), s) where φf ;s : H → G is an s-SE of f . However, the homomorphism φf ;s itself is not
necessarily unique.

Definition 3.2 Let G be a reflexive graph. We say that G has the unique sink extension property
(USEP) if G has the SEP and for every s ∈ V (G), every reflexive graph H, every U ⊆ V (H) and
every NE-map f : U → V (G), the s-SE φf ;s : H → G is unique.

Recall that a block of a graph is a connected maximal subgraph with no cut-vertices. Call a
connected reflexive graph G a block-tree, if each block on two or more vertices of G is a clique. The
following claims are easy to prove by induction on the number of blocks.

Claim 3.3 Between any two vertices in a block-tree there is a unique shortest path.

If G is a block-tree and s ∈ V (G), let Ts be the subgraph of G formed by the union of all the
shortest paths between s and x for each x ∈ V (G).

Claim 3.4 For a block-tree G and s ∈ V (G) we have the following:

1. Ts is a spanning subtree of G.

2. Viewing Ts as a rooted tree at s, then the vertices of each block in G form a rooted sub-star
in Ts with all its vertices, except the star-root, on the level just below the star-root.

3. For any vertices x, y ∈ V (G) we have dTs
(x, y) ≤ dG(x, y) + 1.

We can now prove the following.

Theorem 3.5 Every reflexive block-tree has the USEP.

Proof. Let G be a reflexive block-tree and s ∈ V (G). View Ts as rooted spanning tree at s of G.
Let H be a reflexive graph, U ⊆ V (H) and f : U → V (G) an NE-map. For each x ∈ V (H) and
u ∈ U let

Nu(x) = {v ∈ V (G) : dG(f(u), v) ≤ dH(u, x)}.

There is a unique vertex zu(x) ∈ Nu(x) that is closest to s among all vertices of Nu(x), namely the
vertex on the unique path from f(u) to s in Ts at distance min{dH(u, x), dG(f(u), s)} from f(u) in
G. We now argue that the vertices {zu(x) : u ∈ U} lie on an ancestral path in Ts w.r.t. the root s:
Assume that there are u′, u′′ ∈ U where neither of zu′(x) or zu′′(x) is an ancestor of the other in Ts.
This means in particular that neither zu′(x) nor zu′′(x) equals s and that dTs

(zu′(x), zu′′(x)) ≥ 2.
Hence, by definition of zu′(x) and zu′′(x) we then have

dTs
(f(u′), f(u′′)) = dTs

(f(u′), zu′(x)) + dTs
(zu′(x), zu′′(x)) + dTs

(zu′′(x), f(u′′))

≥ dH(u′, x) + 2 + dH(u′′, x)

≥ dH(u′, u′′) + 2.
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By Claim 3.4 we then have dG(f(u′), f(u′′)) > dH(u′, u′′) which contradicts that f is an NE-map.
Therefore the vertices of {zu(x) : u ∈ U} all lie on an ancestral path in Ts rooted at s.

Define φf ;s(x) to be the unique vertex z∗(x) ∈ {zu(x) : u ∈ U} that is the descendant of all
of them (note, here a vertex is considered a descendant of itself!) Since for each u ∈ U we have
Nu(u) = {f(u)}, we clearly have z∗(u) = f(u) and hence φf ;s agrees with f on U .

If now x′ is adjacent to x in H, then |dH(u, x)−dH(u, x′)| ∈ {0, 1} for each u ∈ U and therefore
each of zu(x′) is adjacent to or equal to zu(x) in G. This in return implies that z∗(x) is also
adjacent to or is equal to z∗(x′) in G, and hence dG(z∗(x), z∗(x′)) ≤ 1, showing that φf,s : H → G
is a homomorphism. By the mere definition of φf ;s, it is clear that φf ;s is an s-SE. Finally, by the
uniqueness of z∗(x) we see that φf ;s is uniquely determined. Since s ∈ V (G) was arbitrary we have
completed the proof. ut

Note: Similar arguments as used in the above proof can be used to show directly that every
block-tree has the Helly property: Assuming this property, since f : U → V (G) is an NE-map we
have Nu(x) ∩ Nu′(x) 6= ∅ for every u, u′ ∈ U and hence by the Helly property of {Nu(x) : u ∈ U}
we have

N(x) =
⋂

u∈U

Nu(x) 6= ∅.

By induction on |U | we can see that N(x) is a block-subtree of G, and hence contains a unique
vertex closest to s among all vertices of N(x). This vertex turns out to be precisely the vertex
z∗(x) defined in the above proof.

Remark: In the case of a reflexive tree T , the definition of our s-SE φf ;s in the proof of
Theorem 3.5, has a physical interpretation as follows: Let T be rooted at s and direct each edge
from a child to its parent, so that all vertices of T except s have out-degree one whereas s has
out-degree zero. Call this digraph ~Ts and assume further that each edge is straight and has a unit
length. Now, imagine there is a gravitational force field on ~Ts that pulls along its directed edges.
Assume likewise that the edges in H also have unit length and that we identify each x ∈ U with
its image f(x) in ~Ts and form the quotient (H + ~Ts)/f (where the edges of T are directed and the
ones from H are not.) Keeping ~Ts rigid and letting the vertices of H hang along the gravitational
field of ~Ts, then each vertex x ∈ H will place precisely at the unique vertex as close to the root s
as H allows. This is exactly the vertex z∗(x) defined in the proof of Theorem 3.5 in the case of
reflexive tree T .

Since a reflexive path is in particular a reflexive block-tree, we have by Theorem 3.5 the following
trivial but important corollary.

Corollary 3.6 Every reflexive path has the USEP, and hence the SEP.

For reflexive graphs G1 and G2 their Cartesian product or just product, denoted by G1 ×G2, is the
reflexive graph with vertex set V (G1) × V (G2) (the usual Cartesian product) and where

{(x1, x2), (y1, y2)} ∈ E(G1 × G2) ⇔ {x1, y1} ∈ E(G1) and {x2, y2} ∈ E(G2).

It is easy to see that the product of reflexive graphs is an associative operation and hence it
makes sense to talk about the product of k reflexive graphs G̃ = G1 × · · · × Gk as the reflexive
graph with vertices V (G̃) = V (G1) × · · · × V (Gk) and where for two vertices x̃ = (x1, . . . , xk)
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and ỹ = (y1, . . . , yk) we have {x̃, ỹ} ∈ E(G̃) ⇔ {xi, yi} ∈ E(Gi) for each i ∈ [k]. Note that for
x̃, ỹ ∈ V (G̃) we have

d eG
(x̃, ỹ) = max

1≤i≤k
{dGi

(xi, yi)}. (3)

Also, for each i ∈ [k] the natural projection πi : G̃ → Gi is given by πi(x̃) = xi. It is clear that
each πi is a homomorphism of reflexive graphs. If k ∈ N and φi : H → Gi is a homomorphism for
each i ∈ [k], then φ̃ : H → G̃ given by φ̃ = (φ1, . . . , φk) is the map x 7→ (φ1(x), . . . , φk(x)) for each
x ∈ H. By (3) we note the following:

Observation 3.7 Let k ∈ N.

1. If φi : H → Gi is a homomorphism for each i ∈ [k] then φ̃ : H → G̃ given by φ̃ = (φ1, . . . , φk)
is also a homomorphism.

2. Conversely, if φ̃ : H → G̃ is a homomorphism, then φ̃ has the form φ̃ = (φ1, . . . , φk) where
each homomorphism φi : H → Gi is a uniquely determined by φi = πi ◦ φ̃.

A celebrated complete description of absolute retracts is given by the following theorem, the state-
ment of which can be found in [14, Thm. 5.7] and [12, Cor. 2.56] but stems from [8].

Theorem 3.8 A reflexive graph is an absolute retract if, and only if, it is a retract of product of
reflexive paths.

Assume now G1, . . . , Gk are reflexive graphs with the SEP and G̃ = G1 × · · · × Gk. Let s̃ =
(s1, . . . , sk) ∈ V (G̃) a vertex, H a reflexive graph, U ⊆ V (H) and f̃ : U → V (G̃) an NE-map.
If πi : G̃ → Gi is the projection onto the i-th coordinate then each fi = πi ◦ f̃ : U → V (Gi) is
also an NE-map for each i, which can be extended to an si-SE φfi;si

: H → Gi. Then φ̃f̃ ;s̃ =

(φf1;s1
, . . . , φfk;sk

) : H → G̃, yields a uniquely determined homomorphism. Suppose now that

θ̃f̃ : H → G̃ is a homomorphism that also extends f̃ . In this case θfi
: H → Gi extends the

NE-map fi : U → Gi for each i ∈ [k]. In this case we have dGi
(φfi;si

(x), si) ≤ dGi
(θfi

(x), si) for
each i ∈ [k], and hence

d eG(φ̃f̃ ;s̃(x), s̃) = max
1≤i≤k

{dGi
(φfi;si

(x), si)} ≤ max
1≤i≤k

{dGi
(θfi

(x), si)} = d eG(θ̃f̃ (x), s̃).

This shows that φ̃f̃ ;s̃ is a s̃-SE. Since s̃ ∈ V (G̃) was arbitrary, we have the following.

Observation 3.9 A product of reflexive graphs with the SEP has the SEP.

Note: We can not replace “SEP” with “USEP” in Observation 3.9 as the following example will
demonstrate.

Example: Let H be the reflexive path on three vertices a, b, c in this order. Likewise let P1

and P2 be the reflexive paths on the vertices {0, 1} and on {0, 1, 2} in this order respectively. If
U = {a, c} and f̃ : U → V (P1 × P2) is given by f̃(a) = (0, 0) and f̃(c) = (1, 2), then f̃ is clearly an
NE-map. Assume our sink s̃ = (0, 0). Here there are precisely two legitimate extensions φ̃f̃ ;1 and

φ̃f̃ ;2 where φ̃f̃ ;1(b) = (0, 1) and φ̃f̃ ;2(b) = (1, 1). These homomorphisms satisfy

dP1×P2
(φ̃f̃ ;1(x), s̃) = dP1×P2

(φ̃f̃ ;2(x), s̃)

for all x ∈ {a, b, c} and hence are both s̃-SE’s. Hence, a product of two USEP’s is not necessarily
a USEP. We have however the following.
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Proposition 3.10 For reflexive graphs we have:

1. A retract of a reflexive graph with the SEP has the SEP.

2. A retract of a reflexive graph with the USEP has the USEP.

Proof. Let G be a retract of G′ where G′ has the SEP and s ∈ V (G) a given vertex. Let r : G′ → G
be the retraction. Let H be a reflexive graph, U ⊆ V (H) and f : U → V (G) an NE-map. Since
V (G) ⊆ V (G′) we can view f as a map from U into V (G′). By the SEP of G′ there is an s-SE
φ′

f ;s : H → G′. Let φf ;s = r ◦ φ′
f ;s : H → G. Clearly φf ;s is a homomorphism that extends f .

Assume that φf : H → G is another extension of f . Since r is a retraction and hence an NE-map,
we have

dG(φf ;s(x), s) = dG((r ◦ φ′
f ;s)(x), r(s)) ≤ dG′(φ′

f ;s(x), s). (4)

Since G is an isometric subgraph of G′ and by viewing φf as a homomorphism into G′ we have,
since φ′

f ;s is an s-SE, that

dG′(φ′
f ;s(x), s) ≤ dG′(φf (x), s) = dG(φf (x), s). (5)

By (4) and (5) we have that dG(φf ;s(x), s) ≤ dG(φf (x), s). Since s ∈ V (G) was arbitrary, we have
that G has the SEP. Hence, we have proved the first part.

Assume further that G′ has the USEP. We want to show that φf ;s : H → G is the unique s-SE
of G. Let i : G ↪→ G′ be the inclusion map.

Claim 3.11 The homomorphism i ◦ φf ;s : H → G′ is an s-SE of G′.

Proof. (Claim 3.11:) Since G is an isometric subgraph of G′ we have

dG′((i ◦ φf ;s)(x), s) = dG(φf ;s(x), s). (6)

Assume θf : H → G′ extends f : U → V (G) ⊆ V (G′). Since the retraction r is a homomorphism
it is nonexpansive and hence

dG((r ◦ θf )(x), s) ≤ dG′(θf (x), s). (7)

Clearly r ◦ θf extends the vertex map f . Since φf ;s is an s-SE of G, then we have by (6) and (7)
that dG′((i ◦ φf ;s)(x), s) = dG(φf ;s(x), s) ≤ dG((r ◦ θf )(x), s) ≤ dG′(θf (x), s). This completes the
proof of Claim 3.11. ut

By the USEP property of G′ and Claim 3.11 the sink-extension i ◦ φf ;s is unique and hence so is
φf ;s. This completes the proof of the second part. ut

Note that in a product G̃ = G1 × . . . × Gk each Gi can be viewed as a retract of G̃. Hence, by
Proposition 3.10, we can state the reverse of Observation 3.9.

Corollary 3.12 A product G̃ = G1 × . . .×Gk of reflexive graphs has the SEP if, and only if, each
Gi has the SEP.

Let G be a reflexive graph satisfying the EP. By Observation 2.3 and Theorem 3.8, G must be a
retract of product of reflexive paths. By Corollary 3.6, Observation 3.9 and Proposition 3.10, G
must have the SEP. Hence, we have the following.
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Theorem 3.13 A reflexive graph has the SEP if, and only if, it has the EP.

We summarize in the following extension of Observation 2.3.

Corollary 3.14 For a reflexive graph G the following are equivalent:

1. G has the SEP.

2. G has the EP.

3. G is an absolute retract.

4. G has the Helly property.

Algorithmic concerns: To decide whether a given reflexive graph on n vertices and m non-loop
edges has the Helly property can be done in polynomial time. In fact, Bandelt and Pesch [2] gave
two recognition algorithms for Helly graphs, one of time complexity O(n4) and the other of time
complexity O(mn2). Hence, by Corollary 3.14, reflexive graphs satisfying the SEP can also be
recognized by these very polynomial time algorithms.

Although not entirely within the focus of this paper, we will conclude this section by briefly
considering the relevant special case when G is a reflexive path G = P :

If P has n vertices, then we can represent the vertices of P by the integers {1, . . . , n} = [n] and
connect a and b iff |a − b| ≤ 1. In this way we obtain a total order on V (P ) = [n]. Hence, if X
is a set, then we have a natural partial order ≤′ on the collection of all vertex maps f : X → P ,
namely by putting f1 ≤′ f2 iff f1(x) ≤ f2(x) holds in V (P ) = [n] for all x ∈ X. In [5, Thm. 2]
it is shown that if H is a reflexive graph, U ⊆ V (H) and f : U → P an NE-map, then there are
homomorphisms φ−, φ+ : H → P extending f such that for any homomorphism φ that also extends
f we have φ− ≤′ φ ≤′ φ+. By using the SEP of reflexive paths and their products, this becomes
clear and transparent, and can further be generalized as we will now briefly do:

Recall that for k ∈ N we have a natural partial order � on N
k given by

ã � b̃ ⇔ ai ≤ bi for all i ∈ [k].

Since each reflexive path on n vertices can be represented by the vertices [n] ⊆ N, we can embed
any product of reflexive paths P1 × · · · ×Pk into the infinite reflexive grid N

k in which two vertices
ã and b̃ are adjacent iff maxi∈[k]{|ai − bi|} ≤ 1. With this notation we have the following.

Proposition 3.15 Let H be a (finite) connected reflexive graph, U ⊆ V (H) and f : U → N
k a

NE-map. Then there are homomorphisms φf ;min, φf ;max : H → N
k extending f , such that for any

homomorphism φf extending f we have φf ;min � φf � φf ;max.

Proof. (Sketch.) Since H is finite and connected, then there is an m ∈ N such that f : U →
[m]k ⊆ N

k and such that any homomorphism φf extending f has φf (x) � m̃ = (m, . . . ,m) ∈ N
k.

By Theorem 3.9 we have that [m]k has the SEP, so the desired bounding homomorphisms can
obtained by letting φf ;min be the 1̃-SE φf ;1̃ and φf ;max the m̃-SE φf ;m̃, where 1̃ = (1, . . . , 1) ∈ N

k.
ut

When k = 1, Proposition 3.15 is now precisely [5, Thm. 2]. In fact, for k = 1 we can further say
the following. The proof is clear by the definition of an s-SE given in the proof of Theorem 3.5.
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Proposition 3.16 Let H be a (finite) connected reflexive graph, U ⊆ V (H) and f : U → N a
NE-map. In this case all the i-SE’s {φf ;i : i ∈ N} are totally ordered and form a chain

φf ;1 ≤′ φf ;2 ≤′ · · · ≤′ φf ;i ≤
′ · · · .

Moreover, this listing eventually becomes stationary, that is, for each H there is an N ∈ N that
depends on H, U and f , such that φf ;i = φf ;N for all i ≥ N .

4 On graphs satisfying the USEP

As we saw in the example preceding Proposition 3.10, the product P1 × P2 of two reflexive paths
on two and three vertices respectively did not satisfy the USEP. By the same token as in that
example, we can argue that any reflexive graph that contains the reflexive 4-cycle C4 with at most
one chord as an induced subgraph does not have the USEP. Therefore, if G1 and G2 are two
connected reflexive graphs on two or more vertices and G2 is not complete, then G1 ×G2 does not
have the USEP. Since the class of connected reflexive graphs has the unique factorization property
w.r.t the product ×, then we have in particular the following observation. (Note that by a prime
graph we mean a connected reflexive graph that cannot be written as a product of two graphs, each
on two or more vertices and neither complete. For more detailed information see [14, p. 159] or the
original paper [17].)

Observation 4.1 A connected reflexive graph satisfying the USEP is either a prime graph or a
complete reflexive graph.

The only fact we used to deduce Observation 4.1 was that if there are two vertices with at least
two shortest paths between them, then the graph cannot satisfy the USEP. This we state more
formally.

Lemma 4.2 If G is a connected reflexive graph that satisfies the USEP, then the shortest path
between any pair of vertices in G is unique.

Proof. (Sketch.) Assume there are two vertices x, y ∈ V (G) with two different shortest paths P
and P ′ between them of length k = dG(x, y). Let H be the simple reflexive path on u0, u1, . . . , uk,
U = {u0, uk} ⊆ V (H) and f : U → V (G) be given by f(u0) = x and f(uk) = y. In this case
mapping H onto either P or P ′ will in both cases yield an s-SE for s ∈ {x, y}. Hence, there are at
least two s-SE’s in G. ut

The converse of Lemma 4.2 does not hold since the shortest path between any pair of distinct
vertices in an odd cycle Cm is unique, and it is easy to see that Cm does not have the EP for any
m ≥ 4.

For a more complete description of graphs satisfying the USEP we need the following intuitively
obvious theorem.

Theorem 4.3 If G is a reflexive Helly graph in which the shortest path between any pair of vertices
is unique, then each cycle of G induces a clique in G.
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Proof. Let G be a reflexive Helly graph in which shortest paths are unique. Let Cm be a cycle of
length m ∈ N. We will show by induction on m that Cm must induce a clique:

For m = {1, 2, 3} then Cm is a reflexive clique, so we may assume m ≥ 4. If m = 4 and Cm = C4

does not induce a clique, then there are two opposite vertices of C4 that are not connected with
a cord in G. In this case there are at least two shortest 2-paths between them, a contradiction.
Hence we can assume m ≥ 5. We start by showing that Cm must have a cord. If

x1 = u0 `1 = b(m − 3)/2c
x2 = ub(m−1)/2c `2 = 1

x3 = ud(m+1)/2e `3 = 1

then the closed balls NG
`1

[x1], NG
`2

[x2] and NG
`3

[x3] have pairwise a nonempty intersection, so by the
Helly property of G they have a nonempty intersection. Let v be a vertex in their intersection.
Since either v 6= x2 or v 6= x3, we can for symmetric reasons assume that v 6= x2. Also, we may
assume that v 6∈ {u0, u1, . . . , ub(m−3)/2c} since otherwise {x3, v} is a cord of Cm. Hence, we can
assume that v 6∈ {u0, u1, . . . , ub(m−1)/2c}.

Claim 4.4 Let p ≥ 2, q ≤ p and P = (u0, u1, . . . , up) and Q = (u0, v1, . . . , vq) be paths in G
satisfying up = vq, up−1 6= vq−1 and dG(u0, vq−1) = q − 1. In this case the circuit PQ−1 contains a
cycle involving at least three vertices from P .

Proof. We may assume that q ≥ 2 since otherwise P induces a cycle and we are done. Otherwise,
the claim is clearly true for p = 2 since in that case PQ−1 is itself a cycle. For p ≥ 3 we proceed
by induction as follows:

If u1 ∈ {v1, . . . , vq−1}, then u1 6∈ {v2, . . . , vq−1} since otherwise we have dG(u0, vq−1) < q − 1.
Hence u1 = v1 must hold and the claim follows by induction on P ′ = (u1, . . . up) and Q′ =
{v1, . . . , vq}.

Otherwise there is a least index α ∈ {2, . . . , p} such that uα ∈ {v2, . . . , vq}, say uα = vβ . (Note
that β ≤ α.) If Pα = (u0, u1, . . . , uα) and Qβ = (u0, v1, . . . , vβ) then PαQ−1

β is a cycle involving
u0, u1 and u2. This completes the proof of the claim. ut

Continuing with our proof of Theorem 4.3, let P = (u0, u1, . . . , ub(m−1)/2c) be a path from u0 to
ub(m−1)/2c = x2 and let Q = (u0, v1, . . . , vq) be a path from u0 to vq = x2 where vq−1 = v and
dG(u0, vq−1) = q − 1. By Claim 4.4 PQ−1 contains a cycle involving three of the vertices from P .
This cycle has at most 2b(m− 1)/2c ≤ m− 1 vertices and hence by induction hypothesis this cycle
must induce a clique in G. Further, this cycle involves at least three vertices of Cm which must
therefore have a chord, say {u0, uk} where k ∈ {2, . . . ,m − 2} and where Cm = (u0, . . . , um−1, u0).
By induction hypothesis the cycles C ′ = (u0, . . . , uk, u0) and C ′′ = (u0, uk, . . . , um−1, u0) each
induces a clique in G. Therefore, if i ∈ {1, . . . , k−1} and j ∈ {k +1, . . . ,m−1} then the four-cycle
C ′′′ = (u0, ui, uk, uj , u0) also induces a clique in G, so ui and uj are connected in G. This shows
that Cm induces a clique in G and completes the induction and the proof. ut

A graph in which every cycle induces a clique has all its blocks as cliques. By Theorem 4.3 we
therefore have the following:

Corollary 4.5 A reflexive Helly graph in which the shortest path between any pair of vertices is
unique must be a block-tree.
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By Theorem 3.5, Lemma 4.2 and Corollaries 3.14 and 4.5 we therefore have the following complete
characterization.

Theorem 4.6 A connected reflexive graph G has the USEP if, and only if, G is a block-tree.

Algorithmic concerns: Recognition of block-trees is easy: A pair of distinct vertices are in the
same block iff they are adjacent. Hence, by Theorem 4.6, graphs with the USEP can be recognized
in O(n2)-time.
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