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Abstract. We give nontrivial bounds for the inductiveness or degeneracy of power graphs Gk

of a planar graph G. This implies bounds for the chromatic number as well, since the inductiveness
naturally relates to a greedy algorithm for vertex-coloring the given graph. The inductiveness more-
over yields bounds for the choosability of the graph. We show that the inductiveness of a square of
a planar graph G is at most �9∆/5�, for the maximum degree ∆ sufficiently large, and that it is
sharp. In general, we show for a fixed integer k ≥ 1 the inductiveness, the chromatic number, and
the choosability of Gk to be O(∆�k/2�), which is tight.
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1. Introduction. The kth power Gk of a graph G is defined on the same set of
vertices as G and has an edge between any pair of vertices of distance at most k in
G. The topic of this paper is the coloring of power graphs or, equivalently, coloring
the underlying graphs so that vertices of distance at most k receive different colors.
We focus on the planar case, which has long been the center of attention for graph
coloring.

We upper-bound the chromatic number and the choosability (see Definition 2.10)
by the inductiveness of the graph G, which we denote here by ind(G). This measure
of G, also known as the degeneracy, the coloring number, and the Szekeres–Wilf
number, is defined to be maxH⊆G{minv∈H(dH(v))}, whereH runs through all induced
subgraphs of G. Inductiveness leads to an ordering of the vertices, {v1, . . . , vn}, such
that the number d+(vi) = |{vj ∈ NG(vi) : j > i}| of preneighbors vj ’s of any vi, with
j < i, is at most ind(G).

The problem of coloring squares of graphs has applications to frequency alloca-
tion. Transceivers in a radio network communicate using channels at given radio
frequencies. Graph coloring formalizes this problem well when the constraint is that
nearby pairs of transceivers cannot use the same channel due to interference. How-
ever, if two transceivers are using the same channel and both are adjacent to a third
station, a clashing of signals is experienced at that third station. This can be avoided
by additionally requiring all neighbors of a node to be assigned different colors, i.e.,
that vertices of distance at most 2 receive different colors. This is equivalent to color-
ing the square of the underlying network. Another application of this problem, from a
completely different direction, is that of approximating certain Hessian matrices [13].
Observe that neighbors of a node in a graph form a clique in the square of the graph.
Thus, the minimum number of colors needed to color any square graph is at least
∆ + 1, where ∆ = ∆(G) is the maximum degree of the original graph. As a result,
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the number of colors used by our algorithms on power graphs will necessarily be a
function of ∆. We are particularly interested in the asymptotic behavior as ∆ grows.

Coloring squares of graphs, in particular planar graphs, has been studied in the
literature from two perspectives: in graph theory, focusing on bounding the number
of colors needed, and in computer science, focusing on complexity and approximate
algorithms. We attempt here to contribute to both of these perspectives. We first
review graph-theoretic results on planar graphs in chronological order.

The first reference to appear on coloring squares of planar graphs was by Weg-
ner [19], who gave bounds on the clique number of such graphs. In particular, he
gave an instance for which the clique number is at least �3∆/2�+ 1 (which is largest
possible) and conjectured that this is an upper bound on the chromatic number. He
conjectured that

χ(G2) ≤
{

∆+ 5 if 4 ≤ ∆ ≤ 7;
�3∆/2� if ∆ ≥ 8.

Some work has been done on the case ∆ = 3, as listed in [8, Problem 2.18]. Ra-
manathan and Lloyd [16, 12] showed that ind(G2) ≤ 9∆, which is obtained by a
minimum-degree greedy coloring algorithm. Krumke, Marathe, and Ravi [10] gener-
alized the bound to other classes of graphs, obtaining that ind(G2) ≤ (2 ind(G)−1)∆.

Independent of the original version of this paper [1], there were at least two
unrelated papers on bounding the chromatic number χ(G2) of a square of a planar
graph. van den Heuvel and McGuinness [6] showed that χ(G2) ≤ 2∆ + 25, using
methods similar to those of the proof of the 4-color theorem. Also Jendrol’ and
Skupień [7] showed that χ(G2) ≤ 3∆ + 9, by bounding the inductiveness.

In the current paper, we show that for large values of ∆, squares of planar graphs
are 
9∆/5�-inductive, implying a 
9∆/5�+1-coloring. We show that this is sharp for
all large values of ∆ by constructing graphs attaining this inductiveness. For larger
powers of a planar graph G, we obtain that Gk is O(∆�k/2�)-inductive for any k ≥ 1.
This gives an asymptotically tight algorithmic bound for the chromatic number of the
power graph.

McCormick [13] showed that the problem of coloring the power of a graph is NP-
complete, for any fixed power, and a later proof was given by Lin and Skiena [11].
McCormick gave a greedy algorithm with an O(

√
n)-approximation for squares of

general graphs. Heggernes and Telle [5] showed that determining if the square of a
cubic graph can be colored with four colors or less is NP-complete, while determining
if three colors suffice is easy.

Ramanathan and Lloyd [16, 12] showed the problem of coloring squares of planar
graphs to be NP-complete. Their bound mentioned earlier gave an algorithm with a
performance ratio of 9, which was the best result known previous to [1]. The result of
Krumke, Marathe, and Ravi [10] yields in general a performance ratio of 2 ind(G)−1.
They also gave a polynomial algorithm for graphs of both bounded treewidth and
bounded degree and used that to give a 2-approximation for bounded-degree planar
graphs. Sen and Huson [17] showed that coloring squares of unit-circle graphs is
NP-complete, while a constant approximation algorithm was given in [18].

Zhou, Kanari, and Nishizeki [20] have, in independent work, given a polynomial
algorithm for distance-d coloring partial-k trees, for any constants d and k. As in-
dicated in section 4, this implies a 2-approximation for distance-d coloring planar
graphs for any d. Their algorithm, however, has a large polynomial complexity.

Our contributions give several approximation results. Combining the bound for
squares of large-degree planar graphs with previous results for bounded-degree graphs,
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we obtain a 2-approximation for coloring that holds for all values of ∆. By itself, our
bound gives a 1.8 asymptotic approximate coloring, as the chromatic number of the
square goes to infinity. For higher powers of planar graphs, we obtain the first constant
factor approximation for coloring cubes of planar graphs. However, the real strength
of the current bounds are in giving absolute bounds on the number of colors used by
the algorithm, as opposed to relative approximations, and thus implicitly bounding
the number of colors used by an optimal solution.

Note the fine distinction between coloring the power graph Gk and finding a
distance-k coloring of G. The resulting coloring is naturally the same. However, in
the latter case, the original graph is given. While it is easy to compute the power
graph Gk from G, Motwani and Sudan [14] showed that it is NP-hard to compute the
kth root G of a graph Gk. All of the algorithms presented in this paper work without
knowledge of the underlying root graph.

The rest of the paper is organized as follows. We bound the inductiveness of
squares of planar graphs in section 2 and general powers of planar graphs in section
3. We consider the implications of these bounds to approximate colorings of powers
of planar graphs in section 4.

Notation. The degree of a vertex v within a graph G is denoted by dG(v), or
simply by d(v) when there is no danger of ambiguity. The maximum degree of G is
denoted by ∆ = ∆(G). For a vertex v denote by dk(v) the degree of v in Gk. The
distance between two vertices u and v in a graph is the number of edges on the shortest
path from u to v and is denoted by dG(u, v). Let G[W ] denote the subgraph of G
induced by vertex subset W . Let N(v) = NG(v) be the set of neighbors of v in G, and
let N [v] = NG[v] be the closed neighborhood of v in G given by N [v] = N(v) ∪ {v}.
The common closed neighborhood of u and v in G, denoted N [uv] or NG[uv], is given
by N [uv] = N [u] ∩N [v].

2. Squares of planar graphs. We start with a look at the main technique we
use to derive bounds on the inductiveness of a square graph (and more generally, power
graphs). The argument that is used to show, e.g., that planar graphs are 5-inductive,
is the following. Euler’s formula states that in a planar graph G, |E(G)| ≤ 3|V (G)|−2
(see [4, p. 74]). Thus, G contains a vertex of degree at most 5. Place one such node
first in the inductive ordering and remove it from the graph. Now the remaining graph
is planar, so inductively we obtain a 5-inductive ordering.

The upper bound of 5 on the minimum degree of a planar graph also implies that
squares of planar graphs are of minimum degree at most 5∆. That would seem to
imply a 5∆-ordering of the square graph. However, when a vertex is deleted from the
graph, its incident edges are deleted as well so that vertices originally distance 2 apart
may become much further apart in the remaining graph. An example of this is shown
in Figure 1. Namely, the problem is that an induced subgraph does not preserve the
paths of length 2 between vertices within the subgraph. The upshot is that degrees
in the remaining graph do not adequately characterize degrees in the remaining part
of the square of the graph. Our solution is to replace the deletion of a vertex by the
contraction of an incident edge.

The contraction of an edge uv in graph G is the operation of collapsing the vertices
u and v into a new vertex, giving the simple graph G/uv defined by V (G/uv) =
V (G) \ {v} and E(G) = {ww′ ∈ E(G) : w,w′ �= v} ∪ {uw : vw ∈ E(G)}. Note that if
G is planar, then G/uv is also planar. This is a property of various classes of graphs
that are closed under minor operations. By the classic theorems of Kuratowski and
Wagner (see [4, p. 85]), planar graphs are precisely those graphs for which repeated
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Fig. 1. After the removal of nodes from a graph, a vertex can have vastly more of its original
distance-2 neighbors remaining than its neighbors. After the deletion of the three white vertices, the
center node has five neighbors but 5∆ + 9 of its remaining distance-2 neighbors.

contractions do not yield supergraphs of K5 or K3,3. Minor-closedness holds for
various other classes of graphs, e.g., partial-k trees, but not d-inductive graphs in
general.

Since our bounds on the inductiveness are functions of ∆, it is imperative that
the contraction operations do not increase the maximum degree.

Definition 2.1. An edge uv is mergeable if |N [u] ∪N [v]| ≤ ∆+ 2.
The contraction of a mergeable uv in G yields a simple planar graph G/uv whose

maximum degree stays at most ∆. Also, by the property of edge contractions, the
new distance function is dominated by the one on G (i.e., distances in G/uv are at
most those in G). Thus, to show that a square graph G2 is f(∆)-inductive, we want
to show the existence of a mergeable edge uv with d2(v) ≤ f(∆). We state this as a
general proposition.

Proposition 2.2. Let G be a class of graphs closed under edge contractions, and
let f be a nondecreasing function. Suppose every graph G in G contains a mergeable
edge uv with d2(v) ≤ f(∆). Then, the square of each G in G is f(∆)-inductive.

2.1. Example applications of the contraction technique. We first illus-
trate the technique on simpler examples. Consider a minor-closed class of graphs that
are 2-inductive (e.g., partial-2 trees or series-parallel graphs).

Theorem 2.3. Squares of partial-2 trees are 2∆-inductive.
Proof. We inductively choose a vertex of degree at most 2 in the graph and

contract one of its incident edges. In this case, either of its incident edges is mergeable,
as the degree of each of its remaining neighbors does not increase. At most 2∆ vertices
are within distance at most 2 of the selected vertex. Thus we obtain a 2∆-inductive
ordering of the square graph.

Our second example yields a bound on the inductiveness of planar graphs of small
degree that improves on the 9∆-bound of [16] for 5-inductive graphs.

Theorem 2.4. If G is a planar graph with ∆(G) ≥ 9, then ind(G2) ≤ 4∆(G)+4.
Proof. We consider a maximal supergraph G′ of G and apply a theorem of

Kotzig [9] (see also [7]). The theorem states that a maximal planar graph G′ contains
an edge uv such that dG′(u) + dG′(v) ≤ 13 and, further, that dG′(u) + dG′(v) ≤ 11
unless dG′(u) = 3 or dG′(v) = 3. We may assume dG′(u) ≤ dG′(v).

We claim that uv is mergeable when ∆ ≥ 9 and that d2(u) ≤ 4∆ + 4 (within
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G). By Proposition 2.2, this yields the theorem. We show this by considering the
following two cases. Observe first that since G′ is maximal, u and v share two common
neighbors a and b in G′, and also that NG[w] ⊆ NG′ [w] for any node w.

Case when dG′(u) = 3. In this case, NG′ [u] = {u, v, a, b} ⊆ NG′ [v]. Then, the
union of the closed neighborhoods of u and v in G satisfies

NG[u] ∪NG[v] ⊆ NG′ [u] ∪NG′ [v] = NG′ [v].

Hence, |NG[u]∪NG[v]| ≤ dG′(v) + 1 ≤ 11. So, the edge uv is mergeable when ∆ ≥ 9.
The number of distance-2 neighbors of u in G is at most the sum of the degrees

of a, b, and v, not counting the possible edges from v to a and b, or is at most 2∆+8.
Case when 4 ≤ dG′(u) ≤ 5. Recall that the closed neighborhoods of u and v in

G′ share the four nodes a, b, u, and v. Thus,

|NG[u]∪NG[v]| ≤ |NG′ [u]∪NG′ [v]| = |NG′ [u]|+ |NG′ [v]|−4 = dG′(u)+dG′(v)−2 ≤ 9.

Thus, uv is mergeable when ∆ ≥ 7.
When counting the number of distance-2 neighbors of u inG, each of the neighbors

of u other than v contributes at most ∆ of them, while v contributes itself along with
those of its neighbors not among {u, a, b}. Thus,

d2(u) ≤ (d(u)− 1)∆ + [1 + (11− d(u)− 3)] ≤ 4∆ + 4.

Jendrol’ and Skupień [7] have recently given a refinement of Kotzig’s result, ob-
taining a bound of 3∆+8 on the inductiveness of the square of a planar graph G with
∆(G) ≥ 8.

2.2. Sharp upper bound for large-degree graphs. We now turn to the main
result of this section, which is that when G is planar and ∆ = ∆(G) is large enough,
then G2 is 
9∆/5�-inductive. The following lemma is the key to this result.

Lemma 2.5. Let G be a simple planar graph of maximum degree ∆ ≥ 48. Then
there exists a mergeable edge vw in G with d2(v) ≤ max(
9∆/5�,∆+ 600).

Proof. We assume that we have a fixed planar embedding of G, i.e., that G is a
plane graph. Let Vh = {v ∈ V (G) : d(v) ≥ 26} and Vl = V (G) \ Vh.

If there is a vertex v ∈ Vl with at most one neighbor in Vh, then d2(v) ≤ 1 ·
∆ + 24 · 25 = ∆ + 600. Select any incident edge vw to a low-degree neighbor w
of v, and notice that the contracted edge would result in a node of degree at most
(25− 1) + (25− 1) = 48. Since ∆ ≥ 48, vw satisfies the claim of the lemma. Hence,
for the rest of this proof, we assume the contrary, i.e., that every vertex in Vl has at
least two neighbors in Vh.

Call a cycle of four vertices in G forbidden if exactly two opposite vertices of the
cycle are in Vh and the enclosed region formed by the cycle in the plane properly
contains at least one vertex in Vh.

If G contains a forbidden 4-cycle, then let G′ be the subgraph of G induced by
the region bounded by a minimal such 4-cycle. (Here, minimal means that no other
4-cycle is inside.) If G contains no such cycle, then let G′ be G.

Consider now the multigraph H with vertex set V (H) = Vh ∩ V (G′) and with
colored edges defined as follows. For each edge uw in E(G′) with both u,w ∈ Vh,
connect u and w with a red edge. For each vertex v ∈ Vl adjacent to u and w ∈ Vh in
G′ and to no other vertex in Vh, connect u and w in H with a green edge. Finally, for
v ∈ Vl adjacent to u1, u2, . . . , ut ∈ Vh in G′ in a clockwise order for t ≥ 3, connect u1
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to u2, u2 to u3,. . . ,ut−1 to ut, and ut to u1 with blue edges in H. A vertex in V (G′)
is said to be green (blue) if the corresponding edge in H is.

Since G is planar, we note that H is also a planar multigraph. Hence, we can
assume we have a drawing of H in the plane such that

• the vertices of H have the same configuration as in the plane graph G.
• for every pair {u,w} of vertices of H connected by green or blue edges, their
order with respect to u and w is the same as the order of the corresponding
vertices of Vl.

By our assumption there is no vertex in Vl with at most one neighbor in Vh in G, and
hence in G′. Therefore, the degree of a vertex in H is at least that in G′.

4 51 2 3

u

x xxxx

v

u

v

Fig. 2. Example of a common neighborhood and the corresponding multigraph.

For reference, we show in Figure 2 the common neighborhood in G of two vertices
u and v, along with the the corresponding multigraph. Vertices in Vh are in black,
blue vertices are grey, and green vertices are white. Here N [uv] contains five nodes,
in addition to u and v, corresponding to two blue and three green edges. Hence, in
this figure we have in clockwise order w.r.t. the vertex v that x1 is blue (grey in the
figure) since it has three black neighbors, the vertices x2, x3, and x4 are green (white
in the figure) since each has two black neighbors u and v, and x5 is blue (grey in the
figure) since it has four black neighbors.

Let v ∈ V (H) denote a vertex with at most five neighbors in H such that v is not
on the 4-cycle defining G′ (if G′ was so defined). Euler’s formula for planar graphs
implies that there are at least three vertices of V (H) = Vh ∩ V (G′) with at most five
neighbors in H. Hence, there is such a vertex that is not on the 4-cycle defining G′,
as required. From now on, let v denote such a vertex.

Claim 2.6. Let x ∈ NH(v). There are at most two vertices in Vl ∩NG′ [vx] that
have neighbors outside NG′ [vx] ∪ {v, x}.

Assume the contrary, i.e., that there are three vertices in Vl ∩NG′ [vx] that have
neighbors outside NG′ [vx] ∪ {v, x}. Since G′ is a plane graph, one of these three
vertices, call it w, must be contained in the 4-cycle formed by v, x, and the other
two vertices of those three. If w has a neighbor in (Vh ∩ V (G′)) \ NG′ [vx], then we
have a smaller forbidden 4-cycle, contradicting our assumption. If w has a neighbor
in (Vl ∩ V (G′)) \NG′ [vx], then by our assumption, that neighbor must have at least
two neighbors in Vh ∩ V (G′) that cannot be the vertices {v, x}. That would again
yield a smaller forbidden 4-cycle, a contradiction. Hence, we have the claim.

From now on, let u be the node in V (H) with the largest neighborhood NG′ [uv]
in common with v in G′. When breaking ties, we prefer nodes that are not adjacent
to v with a red edge.
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Claim 2.7. There is a vertex w ∈ NG′ [uv] such that vw is mergeable and
NG[NG[w]] ⊆ NG[v] ∪NG[v].

Observe that the selection criteria for u also serve to maximize the multiplicity
muv of edges uv in H. Since dG(v) ≥ 26 and dH(v) ≤ 5, we have that muv ≥ 
26/5� =
6. Among these at least six edges, there is at most one red edge, and (by Claim 2.6)
at most two edges (blue or green) that correspond to vertices of Vl ∩ NG′ [uv] with
neighbors outside NG′ [uv]∪{u, v}. Let w′, w, and w′′ be nodes in Vl in this order that
correspond to the first three of the remaining at least muv − 3 edges in a clockwise
order viewed from v (i.e., the white nodes in Figure 2, from left to right). By the
planarity of G′, w must be properly enclosed in the cycle formed by C = {u, v, w′, w′′}.
Hence, NG(w) = NG′(w) ⊆ C, and wv is mergeable. Further, since w′ and w′′ have
no neighbors outside of N [v] ∪N [u], all distance-2 neighbors of w are in N [v] ∪N [u]
as claimed.

To prove the lemma, it suffices to bound the distance-2 degree of either v or
w. We split the argument into two cases, depending on whether there is a red edge
incident to v in H.

Case I. There is no red edge incident to v. Then all of v’s neighbors are in Vl.
Recall that each of them must have at least two high-degree neighbors; thus each of
them belongs to some NG′ [vx] for some x ∈ NH(v). For each x ∈ NH(v), there are
by Claim 2.6 at most two nodes in NG′ [vx], excluding v and x, that have neighbors
outside of NG′ [vx]. Since there are at most five nodes in NH(v), there are at most 10
neighbors of v that have neighbors outside of NG′ [v] ∪NH(v). Hence,

d2(v) ≤ ∆+ 10 · 25 + 5 < ∆+ 600.

Case II. There is a red edge incident on v, say x1v. Thus, v ∈ NG′ [x1v]. Since
each node in Vl is by assumption adjacent to at least two vertices in Vh, it holds that⋃

x∈NH(v) NG′ [xv] = NG′ [v]. Then,

|NG[uv]| = |NG′ [uv]| ≥ |NG′ [v]|/|NH(v)| ≥ 
(dG′(v) + 1)/5�.

Since NG[w] = NG′ [w] ⊆ NG′ [uv], and since x �→ x− 
x/5� is an increasing function,
we have

d2(w) + 1 = |NG[u] ∪NG[v]|
≤ |NG[u]|+ |NG[v]| − |NG[uv]|
≤ (∆ + 1) + (dG′(v) + 1)− 
(dG′(v) + 1)/5�
≤ 2(∆ + 1)− 
(∆ + 1)/5�
= 
9∆/5�+ 1.

Together, the two cases establish that for at least one of the nodes v, w, we have that
the distance-2 degree is at most max(
9∆/5�,∆+ 600).

Our main result now follows from Lemma 2.5 and Proposition 2.2.
Theorem 2.8. If G is a planar graph with ∆ = ∆(G) ≥ 750, then G2 is 
9∆/5�-

inductive.
It turns out that 
9∆/5� is a sharp upper bound for the inductiveness for all

values of ∆ ≥ 750.
Observation 2.9. For any ∆ ≥ 5, there exists a planar graph G of maximum

degree ∆ such that G2 is of minimum degree 
9∆/5�.
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Fig. 3. Icosahedron graph and split edges.

Proof. Let ∆ ≥ 5 and q = �∆/5� + 1. Then ∆ = 5q − i, where q ≥ 2 and
i ∈ {1, 2, 3, 4, 5}. Let H be a five-regular planar icosahedron graph that can be
partitioned into five perfect matchings (see Figure 3, where the edges of the first
perfect matching are shown in bold). We construct from H a graph G as follows:
To the first i perfect matchings we add q − 2 paths of length 2, and we replace the
remaining 5 − i perfect matchings with q paths of length 2. Observe that there are
two kinds of vertices in G; one kind has degree 2 and the other has degree ∆.

Consider a vertex w of degree 2 in G. If the neighbors of w of degree ∆ are u and
v, then there are precisely q vertices in N [uv]. Hence, the distance-2 degree of w is
given by

d2(w) + 1 = |N [u]|+ |N [v]| − |N [uv]|
= 2(∆ + 1)− (�∆/5�+ 1)

= 
9∆/5�+ 1.

However, a vertex v of degree ∆ is connected to i ≥ 1 other vertices of degree ∆. Call
one of them u. Note that every vertex in N [v] ∪N [u] is of distance 2 or less from v,
and hence we have

d2(v) + 1 ≥ |N [v] ∪N [u]| = |N [u]|+ |N [v]| − |N [uv]| = 
9∆/5�+ 1.

Therefore, the minimum degree of G2 is precisely 
9∆/5�, thereby completing our
proof.

Recall the following definition of choosability given in [4].

Definition 2.10. A graph G is k-choosable if for every collection {Sv : v ∈
V (G)} of lists of colors, Sv ⊆ {1, 2, 3, . . .}, where |Sv| = k for every v ∈ V (G), there
is a color assignment

c : V (G) →
⋃

v∈V (G)

Sv

such that

• c(v) ∈ Sv for each v ∈ V (G), and
• if c(v) = c(u), then v and u are not neighbors in G.
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The minimum such k is called the choosability of G and denoted by ch(G).
We note that if a graph is k-choosable, then it is k-colorable. Also, by an easy

induction, one can see that if a graph is k-inductive, then it is (k+ 1)-choosable. For
any graph G we therefore have

χ(G) ≤ ch(G) ≤ ind(G) + 1.

Hence, from Theorem 2.8 we have in particular the following corollary.
Corollary 2.11. If G is a planar graph with ∆ = ∆(G) ≥ 750, then ch(G2) ≤


9∆/5�+ 1.

3. General powers of planar graphs. In this section we consider general pow-
ers Gk of planar graphs and establish tight asymptotic bounds on the inductiveness
of ind(Gk). In fact we prove the following theorem, which in particular improves the
bound of χ(Gk) given in [7], where it is shown that χ(Gk) is bounded from above by
a polynomial in ∆ of degree k − 1.

Theorem 3.1. Let G be a planar graph with maximum degree ∆. For any fixed
k ≥ 1, Gk is O(∆�k/2�)-colorable. Also, there is a family of graphs that attains this
bound. This bound is also asymptotically tight for the clique number, inductiveness,
choosability, arboricity, and minimum degree of Gk.

Let us first give a construction that matches the bound of the theorem. Given
k,∆ ≥ 1, consider the tree T of height �k/2�, where internal vertices have degree ∆.
The number of vertices in T is

D∆,k = 1+∆+∆(∆− 1)+∆(∆− 1)2 + · · ·+∆(∆− 1)�k/2�−1 =
∆(∆− 1)�k/2� − 2

∆− 2
.

Observe that T k is a complete graph; thus χ(T k) = D∆,k.
We now turn to proving the upper bound of the theorem. First we introduce

some terminology.
Notation and arboricity. A k-path is a path of length exactly k. A (k,≤)-path is

a path of length k or less. If u and v are vertices of a given graph, then a walk of
length k from u to v is simply a sequence (u0, e1, u1, . . . , uk−1, ek, uk), where u0 = u,
uk = v, and each ei has end vertices ui−1 and ui. Note that in a walk, both vertices
and edges may be repeated.

Definition 3.2. For a graph G, define its arboricity, denoted arb(G), as the
minimum number of forests needed to cover all the edges of the graph G.

Nash-Williams [15] proved that

arb(G) = max
H⊆G

⌈ |E(H)|
|V (H)| − 1

⌉
.

Arboricity is closely related to inductiveness.
Lemma 3.3. For any graph G, we have arb(G) ≤ ind(G) ≤ 2 arb(G)− 1.
Proof. Let q be ind(G). We first show that E(G) can be partitioned into q forests.

Given a linear arrangement of the vertices, such that each vertex vi has at most q later
neighbors, we arbitrarily color the edges from vi to later vertices with at most q colors.
In this way, each color class is acyclic, since two edges of the same color cannot have
the same first-labeled endpoint, and thus is a forest. Therefore arb(G) ≤ q, proving
the first inequality.

For the second inequality, let ind(G) = q. Let H be a subgraph of G such that
minv(dH(v)) = q. Since 2|E(H)| = ∑

v∈V (H) dH(v) ≥ q|V (H)|, we have arb(G) >
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|E(H)|/|V (H)| ≥ q/2. Since arb(G) is an integer, we have q ≤ 2 arb(G) − 1, which
completes our lemma.

Note that if G is planar, we have that arb(G) ≤ 3 by Euler’s formula and the
Nash-Williams theorem. Also we have that ind(G) ≤ 5. Since there are planar graphs
obtaining these values, the upper bound of Lemma 3.3 is tight for planar graphs.

From Theorem 2.4 and Lemma 3.3 we have in particular that arb(G2) ≤ 4∆ + 4
if ∆ ≥ 9.

Arboricity of power graphs. We now want to find an upper bound of the arboricity
of Gk in terms of ∆, where G is a planar graph. For a vertex set U ⊆ V (G), let Ek(U)
be the edge set of the subgraph of Gk induced by U . Then, the arboricity of Gk is

arb(Gk) = max
U⊆V (G)

⌈ |Ek(U)|
|U | − 1

⌉
.(3.1)

We will use this to bound arb(Gk), but first we note the following.
Lemma 3.4. If G is a simple graph with arb(G) = α, then the edges of G can

be directed in such a way that for each vertex v ∈ V (G), at most α directed edges are
pointing from v.

Proof. Let F1, . . . , Fα be the forests that cover the edges of G. For each subtree
T of each Fi, direct its edges upward towards an arbitrarily chosen root r of T . In
this way each Fi becomes a directed forest F d

i in which every vertex, except the root,
has outdegree 1, and the root has outdegree 0. Hence, as G is the disjoint union of
the forests Fi, the outdegree of each vertex in G is at most α.

Let G be a planar graph and let U ⊆ V (G). Note that if two vertices of U are
connected in Gk, then there is a (k,≤)-path in G between them, and hence an i-walk
between them, where i ∈ {k − 1, k}.

Theorem 3.5. For any graph G, we have arb(Gk) ≤ 2k+1α	k/2
∆�k/2�, where
α = arb(G).

Remark. The main idea of the proof below, of counting the i-walks directly, is
due to the anonymous referees.

Proof. By Lemma 3.4 we can direct the edges of G in such a way that for each
vertex v ∈ V (G) there are at most α directed edges pointing from v.

Let U ⊆ V (G). If uv ∈ Ek(U), then there is an i-walk in G, where i ∈ {k− 1, k},
either from u to v, or from v to u, that walks against at most �i/2� of the given
directions of the edges. Assume in this case there is such an i-walk (w from u to v.

There are
∑�i/2�

j=0

(
i
j

)
possibilities of at most �i/2� edges in (w pointing against the walk.

Also, for each vertex on (w, there are at most α choices of directed edges pointing from
the vertex, and at most ∆ ≥ α choices of directed edges pointing to the vertex. Hence,
the number of possible such i-walks (w from u, with at most �i/2� edges pointing

against the direction of the walk, is
∑�i/2�

j=0

(
i
j

)
αi−j∆j ≤ (

∑�i/2�
j=0

(
i
j

)
)α	k/2
∆�k/2�.

Hence,

|Ek(U)| ≤ 2


�(k−1)/2�∑

j=0

(
k − 1

j

)
+

�k/2�∑
j=0

(
k

j

)α	k/2
∆�k/2�|U | ≤ 2kα	k/2
∆�k/2�|U |.

The theorem now follows from (3.1).
Note that for a planar graph G we have arb(G) ≤ 3. Also note that for any set U

of vertices in graph G, 2|Ek(U)| = ∑
v∈U dG[U ]k(v), and hence, from the above proof,

there is a vertex v with dG[U ]k(v) ≤ 2k+1α	k/2
∆�k/2�. With this in mind we have the
following.
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Corollary 3.6. For a planar graph G with ∆ ≥ 3 we have

arb(Gk), ind(Gk) ≤ 2k+13	k/2
∆�k/2�.

By Lemma 3.3 and Theorem 3.5 we have that for any planar graph G, the chro-
matic number, clique number, choosability, and inductiveness are all at most 2 arb(G),
which completes the proof of Theorem 3.1.

Remarks. Our original approach for proving Theorem 3.1, as found in our un-
refereed report [1], was different. There, our argument was partly based on the fol-
lowing claimed “expansion property” for planar graphs: For a planar graph G and
any subset W ⊆ V (G) of vertices, there is a subset W ′ with W ⊆ W ′ ⊆ V (G) and
|W ′| ≤ 10k−1|W | such that if any two vertices in W are neighbors in Gk, then they
are also neighbors in G[W ′]k, the subgraphs of Gk induced by W ′. Note that there
are serious typos1 in [1].

4. Approximation algorithms. We can improve the best approximation factor
known for coloring squares of planar graphs. Recall that since neighbors in G must
be colored differently in G2, χ(G2) ≥ ∆+ 1. Thus, for ∆ ≥ 750, Theorem 2.8 yields
a 1.8-approximation. Hence, we obtain an asymptotic ratio of 1.8.

For constant values of ∆, we can use a result of Krumke, Marathe, and Ravi [10].
They stated a 3-approximation, but actually a 2-approximation easily follows from
their approach, which is based on an often-used decomposition due to Baker [2]. The
complexity of their approach is equivalent to the complexity of coloring a partial
O(∆)-tree. Combining the results of [10] and [2] with our Theorem 2.8, we obtain a
2-approximation for any value of ∆.

Theorem 4.1. The problem of coloring squares of planar graphs has a 2-approx-
imation.

Theorem 3.1 also immediately gives an O(1)-approximation to coloring cubes of
planar graphs. However, better factors are possible.

Zhou, Kanari, and Nishizeki [20] independently gave a polynomial algorithm for
distance-d coloring partial k-trees for any constant d and k. The complexity of their

algorithm is O(n(α+1)2
2(k+1)(d+2)+1

+n3), where α = O(min(∆d/2, n)) is the number
of colors needed. Since it is not indicated in [20], we show here how this result
yields a 2-approximation for coloring Gd, for any constant d, when combined with the
decomposition of Baker.

The technique of Baker [2] partitions the vertex set V of a planar graph into
subsets V1, V2, . . . , referred to as layers, such that all edges are between adjacent
layers or within the same layer; i.e., if u ∈ Vi and uv ∈ E, then v ∈ Vi−1 ∪ Vi ∪ Vi+1.
Now, let V ′ = ∪i mod 2d<dVi, V

′′ = V − V ′, and G′, G′′ be the subgraphs induced by
V ′ and V ′′. Observe that both G′ and G′′ consist of a collection of disjoint subgraphs
Ui, corresponding to Vdi ∪ Vdi+1 ∪ · · · ∪ Vd(i+1)−1. Further, notice that the subgraphs

induced by the Ui will also be disjoint in G′d and G′′d, since the distance between any
pair of nodes in different subgraphs Ui is at least d+1. Thus, G′d can be computed by
considering each Ui separately. Now, Gd restricted to Ui is a subgraph of the graph

Hd
i , where Hi = G[∪d(i+1)−(d−2)

j=di−(d−1) Ui]. Hi is a (3d−2)-outerplanar graph, which means

1In [1, p. 659], the displayed inequality of Lemma 3.2 and the last line of its proof should have
“E(G)” instead of “E(F )” on the right of that inequality. Likewise, in the first displayed inequality
in the right column on that same page “E(Fi)” should be “E(G[WU ]).” Finally, since G[WU ] is
planar, a factor of “3” should be in front of the rest of the remaining expressions in that display.
This affects the rest of that article, in particular αk in Lemma 3.3 and Corollary 3.1.
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that it is a partial (9d− 8)-tree by a result of Bodlaender [3]. Hence, we can compute

the optimal coloring of each Hi in time O(n2(9d−7)(d+2)+1+1). Thus, we can solve G′2

and G′′2 exactly and, in total, using at most twice the optimal number of colors.
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