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Primary motivation: Helly’s theorem

Theorem (Helly’s Theorem)

Suppose F is a family of at least n + 1 convex sets in the n-dimensional
vector space Rn such that F is finite or each member of F is compact. If
each n + 1 members of F have a common point, there is a point common
to all members of F .
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Primary motivation: Helly-type theorems

For Helly-type results, a (uniform) local property implies a global property.

If every subfamily of size k of the family F has property P, then the family
has the property P.
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The Helly-type problem for support lines of convex bodies

A special class of transversals, namely support lines, was introduced by
Dawson [1].

Figure: Support line for a family of convex bodies in the plane.

We can view a support line as an extremal version of a transverse line.
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The support property, notation and related concepts

A family K of convex sets or bodies in the plane has the (support)
property S provided there is a line supporting every member of K.

Similarly, K has the (support) property S(k) provided every subfamily of
k members from K admits a common support line.
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Helly-type problem for support lines

For a family K of convex sets in the plane, when does the implication
S(k) =⇒ S hold?
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Partial summary of Helly-type results for support lines to
disjoint convex bodies

Dawson [1] proved the assertions below. Revenko and Soltan [3] provide
the improvement of the last assertion in the following theorem.

Theorem

For a finite disjoint family K of convex bodies in the plane, one has
S (5) =⇒ S , S (4) =⇒ S if |K| ≥ 7, S (3) =⇒ S if |K| ≥ 143.
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Open Helly-type problem

The following problem, formulated in Revenko and Soltan [3], is still open.

Problem

Find the smallest value of the natural number n such that S(3) =⇒ S for
any disjoint family of n or more convex bodies in the plane.
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Proof of concept: hard problem
(from Revenko and Soltan [3])

Figure: Sixteen convex bodies with the property S(3) but not S .
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The Helly-type problem for support lines to disjoint unit
disks

For a family F of disjoint unit disks in the plane, when does the
implication S(k) =⇒ S hold?

The results of V. Soltan [4] are summarized together in the following slide.

Motivation to specify to unit disks:

We can interpret unit disks as an ε-ball around a convex body.

As seen, the general problem for convex bodies is hard.
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Six disjoint disks with S(3) but not S

The Figure below (V. Soltan, 2023) shows that the property S(3) does not
imply S for any disjoint family F with 6 or fewer congruent disks.

Figure: S(3) ; S if |F| ≤ 6.
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Summary of the Helly-type results in V. Soltan [4]

Theorem

If F is a disjoint family (possibly infinite) of unit disks in the plane, then
S(4) =⇒ S . Furthermore, S(3) =⇒ S provided that |F| ≥ 7.
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Generalizing to nonoverlapping congruent disks

A generalization of the problem studied in V. Soltan [4].

Problem

Given a nonoverlapping family of congruent disks in the plane, show that
S(4) =⇒ S . Find the smallest value of the natural number n such that
S(3) =⇒ S for any nonoverlapping family of n or more congruent disks in
the plane.
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First Helly-type theorem on support lines

Theorem

For any nonoverlapping family F of congruent disks in the plane, one has
S(4) =⇒ S .
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Second Helly-type theorem on support lines

Theorem

For a nonoverlapping family F of congruent disks in the plane,
S(3) =⇒ S if the family has 8 or more members.
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Definition of critical family

Definition

A nonoverlapping (touching, disjoint) family F of congruent disks in the
plane with the property S (3) but not S (4) is called critical.
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Reduction to critical families F4

Any critical nonoverlapping family Fn (n ≥ 5) of congruent disks in the
plane contains a critical nonoverlapping subfamily F4.

This holds since Fn has S(3) and not S(4), so that some four disks are
not supported by a line and this subfamily retains property S(3).

Any F3 with S(3) has S , not interesting.

A minimal critical family has size 4.
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Family Lij of support lines for disks Ci ,Cj

The following figure gives a useful example of the notation Lij .

ℓ1C1
ℓ2

C2 x

ℓv

Figure: Touching family {C1,C2} and its supports L12 = {`1, `2, `v}.
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Outline of constructing critical families of size 4

Begin with {C1,C2} (which has symmetries of the rectangle, Klein
four-group V ).

At least one line in L12 = {`1, `2, `v} must support each of C3,C4.

Place two additional disks in the plane and solve a resulting system of
equations to determine the coordinates of the centers o3(γ, y3) and
o4(x4, y4) of the disks C3 and C4 (and verify the coordinates are real).
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Critical F4 with three disks in a slab
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Six critical families F4 avoiding three disks in a slab
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Remaining 6 critical families F4 avoiding three disks in a
slab
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All 17 critical families F4 shown in the preceding slides are
pairwise distinct

Outline of proof idea:

Use the group of symmetries of the disks {C1,C2} and lines L12: the
Klein four-group V .

Verify the families are distinct up to rotations and reflections in V .
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Reduction to critical families F4 (Repeated Slide)

Any critical nonoverlapping (disjoint) family Fn (n ≥ 5) of congruent disks
in the plane contains a critical nonoverlapping (disjoint) subfamily F4.

Since Fn has S(3) and not S(4), some four disks are not supported by a
line but retain property S(3).
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Unique touching critical family F5 with no touching critical
subfamily F4 (See Addendum II for a constructive proof.)

o1

o2

o3

o4 o5

ℓ1

ℓ2

ℓ3 ℓdef23R
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Extending touching critical families F4

Heuristically, seeking extensions F5 = F4 ∪ {C5} directly, we must
examine at least 955 configurations of support lines.

We avoid this by first showing that precisely 2 critical supports of F4 must
support C5.

To show this, observe that if a single critical support of F4 supports C5,
then F5 necessarily has at least 2 critical subfamilies of size 4. In the
paper, we show this is impossible.
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Extensions of size 5 of the family depicted in Figure 3.21d
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Three of five extensions of size 5 of the family depicted in
Figure 3.21e
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Two of five extensions of size 5 of the family depicted in
Figure 3.21e
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Four of eight extensions of size 6 of the family depicted in
Figure 3.21e
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Remaining four of eight extensions of size 6 of the family
depicted in Figure 3.21e
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Extensions of size 7 of the family depicted in Figure 3.21e
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Extensions of size 5 of the family depicted in Figure 3.22a
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Extensions of size 6 of the family depicted in Figure 3.22a
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Extensions of size 5 of the family depicted in Figure 3.22b
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Extension of size 6 of the family depicted in Figure 3.22b
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Outline of the proof of the second Helly-type theorem

The theorem states S(3) =⇒ S if the nonoverlapping family F contains
at least 8 members.

Survey all of the critical nonoverlapping families.

Identify the largest family (size 7).

It follows that any nonoverlapping family F of at least 8 members
with property S(3) has the support property S (by exhaustion).
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Thank you.
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Addendum I: Connection to topology

Helly’s theorem, and Helly-type theorems, of combinatorial geometry share
an affinity with the finite intersection property (f.i.p.) of standard topology.

Definition (Topology, James R. Munkres, p. 169)

A collection C of subsets of [a space] X is said to have the finite
intersection property if for every finite subcollection {C1, . . . ,Cn} of C,
the intersection C1 ∩ · · · ∩ Cn is nonempty.
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Addendum II: Extension Fn from disjoint critical F4

Assume first that n = 5.

Suppose the extension F5 = F4 ∪ {C5} contains disjoint critical family
F4 = {C1,C2,C3,C4}.

And, a line supports each of its touching subfamilies of size four.
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Addendum II: Touching subfamilies of size 4

Since C5 touches at least one disk of F4,
we stipulate up to labels that C5 touches C4.

The touching subfamilies of size four contain {C4,C5} and have form
{C4,C5} ∪ {Ci ,Cj} (i 6= j ∈ {1, 2, 3}).

Precisely 1 ·
(3
2

)
= 3 touching subfamilies F ,G,H of size four in F5

contain subfamily {C4,C5}.
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Addendum II: Touching subfamilies F ,G,H

For notational convenience, we fix the touching subfamilies by label as in
the following:

F = {C4,C5} ∪ {C1,C2} = {C1,C2,C4,C5}
G = {C4,C5} ∪ {C1,C3} = {C1,C3,C4,C5}
H = {C4,C5} ∪ {C2,C3} = {C2,C3,C4,C5}
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Addendum II: Touching subfamily {C4,C5} of F5

Touching {C4,C5} has three support lines L45 = {`1, `2, `3}.

o4 o5

ℓ1

ℓ2

ℓ3

Figure: Touching subfamily {C4,C5} of the extension F5 of disjoint critical F4.
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Addendum II: Support lines in L45

A line supports each subfamily F ,G,H, and these lines are necessarily in
L45 since {C4,C5} belongs to each of F ,G,H.

Each of the three lines in L45 supports precisely one of the subfamilies
F ,G,H (by the pigeonhole principle).
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Addendum II: Support relations

Up to labels, we stipulate the following:

`1 supports F =⇒ `1 supports {C1,C2,C4}
`2 supports G =⇒ `2 supports {C1,C3,C4}
`3 supports H =⇒ `3 supports {C2,C3,C4}

The preceding implies the following pairs of lines support each respective
disk as labeled:

Both of `1, `2 support C1,

both of `1, `3 support C2, and

both of `2, `3 support C3.
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Addendum II: Three of 4 disks in disjoint critical F4

o2
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Figure: Induced positions of C2,C3 disjoint from C4.
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Addendum II: The family F5
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Figure: Unique touching critical F5 with no touching critical F4.
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Addendum III: Overlapping family F4 that is extendable
with C5 not in the slab between the parallel critical
supports

o3

o4
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Addendum III: Overlapping extension of size 5

o3

o4
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Addendum IV: Conjecture: S(3) =⇒ S has threshold
number 10 for overlapping families

Figure: Overlapping critical F9.
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End of slides.
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