Helly-Type Theorems on Support Lines for Families of Congruent Disks in the Plane

Tyler Russ

George Mason University

Friday, February 9, 2024 from 12:30 pm

Motivation

- Helly's theorem and Helly-type theorems
- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

Motivation

- Helly's theorem and Helly-type theorems
- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

Table of Contents

Motivation

• Helly's theorem and Helly-type theorems

- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

Theorem (Helly's Theorem)

Suppose \mathcal{F} is a family of at least n + 1 convex sets in the n-dimensional vector space \mathbb{R}^n such that \mathcal{F} is finite or each member of \mathcal{F} is compact. If each n + 1 members of \mathcal{F} have a common point, there is a point common to all members of \mathcal{F} .

For Helly-type results, a (uniform) local property implies a global property.

If every subfamily of size k of the family \mathcal{F} has property P, then the family has the property P.

Motivation

- Helly's theorem and Helly-type theorems
- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

The Helly-type problem for support lines of convex bodies

A special class of transversals, namely *support lines*, was introduced by Dawson [1].

Figure: Support line for a family of convex bodies in the plane.

We can view a support line as an extremal version of a transverse line.

- A family \mathcal{K} of convex sets or bodies in the plane has the (support) property S provided there is a line supporting every member of \mathcal{K} .
- Similarly, \mathcal{K} has the (support) property S(k) provided every subfamily of k members from \mathcal{K} admits a common support line.

For a family \mathcal{K} of convex sets in the plane, when does the implication $S(k) \implies S$ hold?

∃ ▶ ∢

Partial summary of Helly-type results for support lines to disjoint convex bodies

Dawson [1] proved the assertions below. Revenko and Soltan [3] provide the improvement of the last assertion in the following theorem.

Theorem

For a finite disjoint family \mathcal{K} of convex bodies in the plane, one has $S(5) \implies S$, $S(4) \implies S$ if $|\mathcal{K}| \ge 7$, $S(3) \implies S$ if $|\mathcal{K}| \ge 143$.

The following problem, formulated in Revenko and Soltan [3], is still open.

Problem

Find the smallest value of the natural number n such that $S(3) \implies S$ for any disjoint family of n or more convex bodies in the plane.

Proof of concept: hard problem (from Revenko and Soltan [3])

Figure: Sixteen convex bodies with the property S(3) but not S.

Motivation

- Helly's theorem and Helly-type theorems
- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

The Helly-type problem for support lines to disjoint unit disks

For a family \mathcal{F} of disjoint unit disks in the plane, when does the implication $S(k) \implies S$ hold?

The results of V. Soltan [4] are summarized together in the following slide.

Motivation to specify to unit disks:

We can interpret unit disks as an ε -ball around a convex body.

As seen, the general problem for convex bodies is hard.

Six disjoint disks with S(3) but not S

The Figure below (V. Soltan, 2023) shows that the property S(3) does not imply S for any disjoint family \mathcal{F} with 6 or fewer congruent disks.

Figure: $S(3) \Rightarrow S$ if $|\mathcal{F}| \leq 6$.

Theorem

If \mathcal{F} is a disjoint family (possibly infinite) of unit disks in the plane, then $S(4) \implies S$. Furthermore, $S(3) \implies S$ provided that $|\mathcal{F}| \ge 7$.

Motivation

- Helly's theorem and Helly-type theorems
- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

A generalization of the problem studied in V. Soltan [4].

Problem

Given a <u>nonoverlapping</u> family of congruent disks in the plane, show that $S(4) \implies S$. Find the smallest value of the natural number n such that $S(3) \implies S$ for any <u>nonoverlapping</u> family of n or more congruent disks in the plane.

Motivation

- Helly's theorem and Helly-type theorems
- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

Theorem

For any nonoverlapping family \mathcal{F} of congruent disks in the plane, one has $S(4) \implies S$.

Theorem

For a nonoverlapping family \mathcal{F} of congruent disks in the plane, $S(3) \implies S$ if the family has 8 or more members.

Motivation

- Helly's theorem and Helly-type theorems
- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

Definition

A nonoverlapping (touching, disjoint) family \mathcal{F} of congruent disks in the plane with the property S(3) but not S(4) is called <u>critical</u>.

Any critical nonoverlapping family \mathcal{F}_n $(n \ge 5)$ of congruent disks in the plane contains a critical nonoverlapping subfamily \mathcal{F}_4 .

This holds since \mathcal{F}_n has S(3) and not S(4), so that some four disks are not supported by a line and this subfamily retains property S(3).

Any \mathcal{F}_3 with S(3) has S, not interesting.

A minimal critical family has size 4.

Family \mathcal{L}_{ij} of support lines for disks C_i, C_j

The following figure gives a useful example of the notation \mathcal{L}_{ij} .

Figure: Touching family $\{C_1, C_2\}$ and its supports $\mathcal{L}_{12} = \{\ell_1, \ell_2, \ell_\nu\}$.

Outline of constructing critical families of size 4

• Begin with {*C*₁, *C*₂} (which has symmetries of the rectangle, Klein four-group *V*).

• At least one line in $\mathcal{L}_{12} = \{\ell_1, \ell_2, \ell_v\}$ must support each of C_3, C_4 .

• Place two additional disks in the plane and solve a resulting system of equations to determine the coordinates of the centers $o_3(\gamma, y_3)$ and $o_4(x_4, y_4)$ of the disks C_3 and C_4 (and verify the coordinates are real).

Critical \mathcal{F}_4 with three disks in a slab

∃ ▶ ∢

Six critical families \mathcal{F}_4 avoiding three disks in a slab

Remaining 6 critical families \mathcal{F}_4 avoiding three disks in a slab

CAGS Talk

All 17 critical families \mathcal{F}_4 shown in the preceding slides are pairwise distinct

Outline of proof idea:

• Use the group of symmetries of the disks {C₁, C₂} and lines L₁₂: the Klein four-group V.

• Verify the families are distinct up to rotations and reflections in V.

Any critical nonoverlapping (disjoint) family \mathcal{F}_n ($n \ge 5$) of congruent disks in the plane contains a critical nonoverlapping (disjoint) subfamily \mathcal{F}_4 .

Since \mathcal{F}_n has S(3) and not S(4), some four disks are not supported by a line but retain property S(3).

Motivation

- Helly's theorem and Helly-type theorems
- Helly-type problem for support lines
- Specializing to unit disks

- Two Helly-type theorems
- Constructing critical families \mathcal{F}_4
- Nonextendable critical families and proof methods

Unique touching critical family \mathcal{F}_5 with no touching critical subfamily \mathcal{F}_4 (See Addendum II for a constructive proof.)

Heuristically, seeking extensions $\mathcal{F}_5 = \mathcal{F}_4 \cup \{C_5\}$ directly, we must examine at least 955 configurations of support lines.

We avoid this by first showing that precisely 2 critical supports of \mathcal{F}_4 must support C_5 .

To show this, observe that if a single critical support of \mathcal{F}_4 supports C_5 , then \mathcal{F}_5 necessarily has at least 2 critical subfamilies of size 4. In the paper, we show this is impossible.

Extensions of size 5 of the family depicted in Figure 3.21d

Three of five extensions of size 5 of the family depicted in Figure 3.21e

Two of five extensions of size 5 of the family depicted in Figure 3.21e

Four of eight extensions of size 6 of the family depicted in Figure 3.21e

Remaining four of eight extensions of size 6 of the family depicted in Figure 3.21e

Extensions of size 7 of the family depicted in Figure 3.21e

Extensions of size 5 of the family depicted in Figure 3.22a

Extensions of size 6 of the family depicted in Figure 3.22a

Extensions of size 5 of the family depicted in Figure 3.22b

Extension of size 6 of the family depicted in Figure 3.22b

The theorem states $S(3) \implies S$ if the nonoverlapping family \mathcal{F} contains at least 8 members.

- Survey all of the critical nonoverlapping families.
- Identify the largest family (size 7).
- It follows that any nonoverlapping family \mathcal{F} of at least 8 members with property S(3) has the support property S (by exhaustion).

- R. Dawson, Helly-type theorems for bodies in the plane with common supports, Geom. Dedicata 45 (1993), 289–299.
- E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Deutsch. Math. Verein. **32** (1923), 175–176.
- S. Revenko, V. Soltan, Helly-type theorems on transversality for set-system, Studia Sci. Math. Hungar. **32** (1996), 395–406.
- V. Soltan, Helly-type results on support lines for disjoint families of unit disks, Beiträge Algebra Geom. **61** (2020), 139-150.
- V. Soltan, Support lines for disjoint families of unit disks, Beiträge Algebra Geom. **64** (2023), 531–534.

Thank you.

・ロト ・ 日 ト ・ 目 ト ・

Helly's theorem, and Helly-type theorems, of combinatorial geometry share an affinity with the finite intersection property (f.i.p.) of standard topology.

Definition (*Topology*, James R. Munkres, p. 169)

A collection C of subsets of [a space] X is said to have the **finite intersection property** if for every finite subcollection $\{C_1, \ldots, C_n\}$ of C, the intersection $C_1 \cap \cdots \cap C_n$ is nonempty. Assume first that n = 5.

Suppose the extension $\mathcal{F}_5 = \mathcal{F}_4 \cup \{C_5\}$ contains disjoint critical family $\mathcal{F}_4 = \{C_1, C_2, C_3, C_4\}.$

And, a line supports each of its touching subfamilies of size four.

Since C_5 touches at least one disk of \mathcal{F}_4 , we stipulate up to labels that C_5 touches C_4 .

The touching subfamilies of size four contain $\{C_4, C_5\}$ and have form $\{C_4, C_5\} \cup \{C_i, C_j\}$ $(i \neq j \in \{1, 2, 3\})$.

Precisely $1 \cdot \binom{3}{2} = 3$ touching subfamilies $\mathcal{F}, \mathcal{G}, \mathcal{H}$ of size four in \mathcal{F}_5 contain subfamily $\{C_4, C_5\}$.

For notational convenience, we fix the touching subfamilies by label as in the following:

$$\mathcal{F} = \{C_4, C_5\} \cup \{C_1, C_2\} = \{C_1, C_2, C_4, C_5\}$$
$$\mathcal{G} = \{C_4, C_5\} \cup \{C_1, C_3\} = \{C_1, C_3, C_4, C_5\}$$
$$\mathcal{H} = \{C_4, C_5\} \cup \{C_2, C_3\} = \{C_2, C_3, C_4, C_5\}$$

Addendum II: Touching subfamily $\{C_4, C_5\}$ of \mathcal{F}_5

Touching $\{C_4, C_5\}$ has three support lines $\mathcal{L}_{45} = \{\ell_1, \ell_2, \ell_3\}$.

Figure: Touching subfamily $\{C_4, C_5\}$ of the extension \mathcal{F}_5 of disjoint critical \mathcal{F}_4 .

Tv	ler	Russ	(GMU)	
			(,	

A line supports each subfamily $\mathcal{F}, \mathcal{G}, \mathcal{H}$, and these lines are necessarily in \mathcal{L}_{45} since $\{C_4, C_5\}$ belongs to each of $\mathcal{F}, \mathcal{G}, \mathcal{H}$.

Each of the three lines in \mathcal{L}_{45} supports precisely one of the subfamilies $\mathcal{F}, \mathcal{G}, \mathcal{H}$ (by the pigeonhole principle).

Addendum II: Support relations

Up to labels, we stipulate the following:

$$\ell_1 \text{ supports } \mathcal{F} \implies \ell_1 \text{ supports } \{C_1, C_2, C_4\}$$

 $\ell_2 \text{ supports } \mathcal{G} \implies \ell_2 \text{ supports } \{C_1, C_3, C_4\}$
 $\ell_3 \text{ supports } \mathcal{H} \implies \ell_3 \text{ supports } \{C_2, C_3, C_4\}$

The preceding implies the following pairs of lines support each respective disk as labeled:

```
Both of \ell_1, \ell_2 support C_1,
both of \ell_1, \ell_3 support C_2, and
both of \ell_2, \ell_3 support C_3.
```

Addendum II: Three of 4 disks in disjoint critical \mathcal{F}_4

Figure: Induced positions of C_2 , C_3 disjoint from C_4 .

2/09/24 56/61

Addendum II: The family \mathcal{F}_5

Figure: Unique touching critical \mathcal{F}_5 with no touching critical \mathcal{F}_4 .

Addendum III: Overlapping family \mathcal{F}_4 that is extendable with C_5 not in the slab between the parallel critical supports

Addendum III: Overlapping extension of size 5

Addendum IV: Conjecture: $S(3) \implies S$ has threshold number 10 for overlapping families

Figure: Overlapping critical \mathcal{F}_9 .

Tyler Russ (GMU)

End of slides.

メロト メポト メヨト メヨト