A directed Steinitz theorem for oriented matroid programming

Walter Morris, George Mason University, Fairfax VA – 22030

Abstract

Holt and Klee proved that if P is a d-dimensional polytope and f is a linear function on P that is not constant on any edge of P, there are d independent monotone paths from the source to the sink of the digraph defined by the vertices and edges of P directed according to the directions of increase of f. Mihalisin and Klee proved that every orientation of the graph of a 3-polytope that is acyclic and admits 3 independent monotone paths from the source to the sink is obtained from some 3-polytope P and some linear function f on P. We prove analogs of Mihalisin and Klee’s theorem and the 3 and 4-dimensional versions of Holt and Klee’s theorem for oriented matroid programs. Here acyclicity is replaced by the requirement that there be no directed cycle contained in a face of the polytope.

Keywords: polytope, directed path, source, sink.