Basic Algebra Worksheet

Exponents

- 1. Simplify $\left(\frac{2}{3}\right)^3$
- 2. Simplify $(4x^2)^2(2x^3)^3$
- 3. Simplify $\left(4a^5b^3\right)^0$
- 4. Simplify with positive exponents only $\frac{\left(x^{-3}\right)^2\left(x^{-5}\right)^{-3}}{\left(x^{-3}\right)^{-4}}$ 5. Simplify as much as possible $\frac{\left(x^{-3}y^{1/2}\right)^4}{x^{10}y^{3/2}}$

Linear Equations

- 1. Determine whether -12 is a solution of $\frac{1}{3}x + 2 = -\frac{1}{4}x + 1$
- 2. Find the solution set for 3a-5=-6a+1
- 3. Solve -15 + 3x = 3(x 5)

Linear Inequalities

- 1. Solve and graph 3x + 3 < 2x 1
- 2. Solve $3(2x-4)-7x \le -3x$
- 3. Solve 2x-3y < 6 for y
- 4. A company that manufactures ink cartridges finds that they can sell x cartridges each week at p dollars, according to x = 1300 - 100 p.

What price should they charge if they want to sell at least 300 cartridges?

Absolute Value Equations

1. Solve
$$|2a-1| = 7$$

2. Solve
$$|3a-6| = -4$$

3. Solve
$$\left| \frac{2}{3}x - 3 \right| + 5 = 12$$

4. Solve
$$|3a+2| = |2a+3|$$

Graphing Lines

1. Graph
$$4x + 5y = 20$$

2. Graph
$$y = 3x - 2$$

3. Graph
$$y = -\frac{2}{3}x + 1$$

4. Graph each of the lines: a.
$$y = \frac{1}{2}x$$
 b. $x = 3$ c. $y = -2$

Slope

- 1. Find the slope of the line through the given points (3,1) and (5,4)
- 2. Find the slope of the line through the given points (-3,2) and (3, -2)
- 3. Find the slope of the line with an *x*-intercept of 4 and a *y*-intercept of 2.
- 4. Find a if the line through (5,a) and (4,2) has a slope of 3.
- 5. Find *y* if the line through $(2, y^2)$ and (1, y) if perpendicular to a line with slope $-\frac{1}{6}$

Systems of Linear Equations

1. Solve
$$\begin{cases} x - 3y = -1 \\ 2x - 3y = 4 \end{cases}$$

2. Solve
$$\begin{cases} 4x + 2y = 8 \\ y = -2x + 4 \end{cases}$$

- $3.\,$ One number is 2 more than 3 times another. Their sum is $26.\,$ Find the two numbers.
- 4. Suppose 850 tickets were sold for a game for a total of \$1100. If adult tickets cost \$1.50 each and children's tickets cost \$1.00, how many tickets were sold?