
General Measure Spaces.

A. Definition and Examples.

Definition 0.1 A pair (X,M), where X is a set and M is a σ–algebra of subsets of X, is
called a measurable space. A function µ:M→ [0,∞] is a measure on (X,M) provided that
(a) µ(∅) = 0, and (b) if {En}∞n=1 ⊆M is disjoint, then

µ

( ∞⋃
n=1

En

)
=
∞∑
n=1

µ(En)

in which case we say that µ is countably additive. The triple (X,M, µ) where (X,M) is a
measurable space and µ a measure on (X,M) is called a measure space.

Examples. (1) (R,L,m) where L is the σ-algebra of Lebesgue measurable subsets of R
and m is Lebesgue measure is a measure space. (R,B,m) where B is the σ-algebra of Borel
sets is also a measure space.

(2) Given f ≥ 0 a measurable function, define for E ∈ L,

µ(E) =
∫
E
f.

Then (R,L, µ) is a measure space. Can all measures be written in this way?

(3) Let X be any set and let 2X denote the collection of all subsets of X. Then (X, 2X , c) is
a measure space where c is the counting measure defined as follows. c(E) is the number of
elements in E if E is finite and c(E) =∞ otherwise.

(4) Let X be any set and let x0 ∈ X, then (X, 2X , δx0) is a measure space where δx0 is
the Dirac measure at x0 defined as follows. δx0(E) = 1 if x0 ∈ E and 0 otherwise. Neither
counting measure or any Dirac measure on R corresponds to integration against a measurable
function on R.

Remark 0.1 (1) What properties of (R,L,m) are common to all measures?

(a) finite additivity.

(b) montonicity.

(c) excision.

(d) countable subadditivity.

(e) continuity of measure.

(f) The Borel-Cantelli Lemma.
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(2) There are several important properties of general measures that are not necessarily shared
by (R,L,m).

Definition 0.2 Let (X,M, µ) be a measure space.

(a) µ is finite if µ(X) <∞.

(b) µ is σ-finite if X is the union of countably many sets of finite measure. Also any set
E ∈M is σ-finite if it is the union of countably many sets of finite measure.

(c) (X,M, µ) is complete if all subsets of any set of measure zero is measurable, that is,
is contained in M.

Remark 0.2 (1) (R,L,m) is not finite but is σ-finite and complete. ([0, 1], L̃,m), where
L̃ = {E ∈ L:E ⊆ [0, 1]} is finite (and hence σ-finite) and complete.

(2) (R, 2R, c) is not finite, not σ-finite, but is complete. (R, 2R, δx0) for some x0 ∈ R is
finite, σ-finite, and complete.

(3) (R,B,m) is not finite, is σ-finite, but is not complete.
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B. Signed Measures and the Jordan Decomposition Theorem.

Proposition 0.1 If (X,M, µ1) and (X,M, µ2) are measures, then for any α, β ≥ 0, αµ1 +
βµ2 is also a measure

Remark 0.3 (1) We have seen that if f ≥ 0 is any measurable function, then if we define
µ(E) =

∫
E f , (R,L, µ) is a measure space. What if we dropped the assumption that f ≥ 0?

We still have that µ(∅) = 0 and countable additivity.

(2) However, in order for this set function to be well-defined we must avoid a situation in
which

∫
E f can fail to be defined. For example, if f(x) = sin(x) and we want to compute

µ([0,∞)), we would be in trouble since the integral
∫∞
0 sin(x) dx is not well-defined. This is

because we can write [0,∞) = E1 ∪ E2 where E1 and E2 are disjoint,
∫
E1

sin(x) = ∞ and∫
E2

sin(x) = −∞ so that
∫∞
0 sin(x) =∞−∞.

(3) We can avoid this problem if we restrict our attention to functions f such that for any
set E ⊆ R,

∫
E f takes on potentially only one of ∞ or −∞. That is, one of the infinities is

always excluded. This concept can be generalized.

Definition 0.3 A signed measure, ν, on a measurable space (X,M) is a function ν:M→
[−∞,∞] such that (a) ν assumes at most one of the values ∞ or −∞, (b) ν(∅) = 0, and (c)
ν is countably additive.

Remark 0.4 (1) Let f be measurable on R with the property that ν(E) =
∫
E f defines a

signed measure on R. If we let A = {x: f(x) ≥ 0} and B = {x: f(x) < 0} and define the
measures

ν+(E) =
∫
A∩E

f =
∫
E
f+ and ν−(E) = −

∫
B∩E

f =
∫
E
f−

then the following hold.

(a) The sets A and B satisfy A ∩B = ∅ and A ∪B = R,

(b) ν+(B) = ν−(A) = 0,

(c) If E ⊆ A then ν(E) ≥ 0 and if E ⊆ B then ν(E) ≤ 0.

(d) ν(E) = ν+(E)− ν−(E).

(2) Each of the properties (a)–(d) can be generalized and is significant in its own right.
Taking all four properties together, we say that {A,B} is a Hahn decomposition of ν.

(3) Such a decomposition always exists.

Definition 0.4 Let (X,M, µ1) and (X,M, µ2) be measures. If there exist sets A and B
such that A ∩B = ∅ and A ∪B = X such that ν1(B) = ν2(A) = 0 then we say that µ1 and
µ2 are mutually singular, sometimes denoted µ1 ⊥ µ2.
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Definition 0.5 Let ν be a signed measure. A measurable set A with the property that for
every measurable subset E of A, ν(E) ≥ 0 is called a positive set for ν, and a measurable set
B with the property that for every measurable subset E of B, ν(E) ≤ 0 is called a negative
set for ν. A measurable set C with the property that for every subset E of C, ν(E) = 0 is
called a null set for ν.

Theorem 0.1 (Hahn Decomposition Theorem) Let ν be a signed measure on the measurable
space (X,M). Then there is a positive set A and a negative set B such that A∩B = ∅ and
A ∪B = X.

Claim 1: Every subset of a positive set is positive, and the countable union of positive sets
is positive.

Claim 2: (Hahn’s Lemma) Let E be a measurable set with 0 < ν(E) < ∞. Then there is
a measurable subset E0 of E that is positive and has positive measure.

Theorem 0.2 (Jordan Decomposition Theorem) Let ν be a signed measure on the measur-
able space (X,M). Then there are two mutually singular measures ν+ and ν− on (X,M)
such that ν = ν+ − ν− and this pair is unique.

Remark 0.5 We call the measure |ν| = ν+ + ν− the total variation measure associated to
ν. Always |ν(E)| ≤ |ν|(E) but equality does not hold in general. An equivalent definition
of |ν| is the following

|ν|(E) = sup
n∑

k=1

|ν(Ek)|

where the supremum is taken over all finite, disjoint collections {Ek}nk=1 of subsets of E.
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