General Measure Spaces.

A. Definition and Examples.

Definition 0.1 A pair (X, M), where X is a set and M is a o—algebra of subsets of X, is
called a measurable space. A function u: M — [0, 00] is a measure on (X, M) provided that
(a) u(@) =0, and (b) if {E,}>°,; C M is disjoint, then

in which case we say that p is countably additive. The triple (X, M, u) where (X, M) is a
measurable space and p a measure on (X, M) is called a measure space.

Examples. (1) (R, £, m) where L is the o-algebra of Lebesgue measurable subsets of R
and m is Lebesgue measure is a measure space. (R, B, m) where B is the o-algebra of Borel
sets is also a measure space.

(2) Given f > 0 a measurable function, define for £ € L,

n(E) = /Ef.

Then (R, £, i) is a measure space. Can all measures be written in this way?

(3) Let X be any set and let 2% denote the collection of all subsets of X. Then (X, 2% ¢) is
a measure space where c is the counting measure defined as follows. ¢(FE) is the number of
elements in £ if E is finite and ¢(F) = oo otherwise.

(4) Let X be any set and let 7y € X, then (X,2% 6,,) is a measure space where d,, is
the Dirac measure at xo defined as follows. 0,,(E) = 1 if g € E and 0 otherwise. Neither
counting measure or any Dirac measure on R corresponds to integration against a measurable
function on R.

Remark 0.1 (1) What properties of (R, £, m) are common to all measures?
(a) finite additivity.

(b) montonicity.

(d) countable subadditivity.

e) continuity of measure.

)
)
(c) excision.
)
(e)
(f) The Borel-Cantelli Lemma.



(2) There are several important properties of general measures that are not necessarily shared
by (R, L, m).

Definition 0.2 Let (X, M, u) be a measure space.
(a) wis finite if p(X) < co.

(b) w is o-finite if X is the union of countably many sets of finite measure. Also any set
E € M is o-finite if it is the union of countably many sets of finite measure.

(c¢) (X, M, pu) is complete if all subsets of any set of measure zero is measurable, that is,
is contained in M.

Remark 0.2 (1) (R, £, m) is not finite but is o-finite and complete. ([0, 1], £, m), where
L={E e L:E C]|0,1]} is finite (and hence o-finite) and complete.

(2) (R,2R, ¢) is not finite, not o-finite, but is complete. (R,2R,4,,) for some 7y € R is
finite, o-finite, and complete.

(3) (R, B,m) is not finite, is o-finite, but is not complete.



B. Signed Measures and the Jordan Decomposition Theorem.

Proposition 0.1 If (X, M, 1) and (X, M, ps) are measures, then for any «, > 0, apq +
B is also a measure

Remark 0.3 (1) We have seen that if f > 0 is any measurable function, then if we define
wE) = [gf, (R,L,p)is a measure space. What if we dropped the assumption that f > 07
We still have that p(0) = 0 and countable additivity.

(2) However, in order for this set function to be well-defined we must avoid a situation in
which [ f can fail to be defined. For example, if f(x) = sin(z) and we want to compute
1([0, 00)), we would be in trouble since the integral [;° sin(z) dx is not well-defined. This is
because we can write [0,00) = E; U Ey where ) and E, are disjoint, [, sin(z) = oo and
g, sin(z) = —oo so that [;°sin(z) = oo — oo.

(3) We can avoid this problem if we restrict our attention to functions f such that for any
set £ C R, [ f takes on potentially only one of oo or —oo. That is, one of the infinities is
always excluded. This concept can be generalized.

Definition 0.3 A signed measure, v, on a measurable space (X, M) is a function v: M —
[—00, 00] such that (a) v assumes at most one of the values co or —oo, (b) v(f) = 0, and (c)
v is countably additive.

Remark 0.4 (1) Let f be measurable on R with the property that v(E) = [ f defines a
signed measure on R. If we let A = {z: f(x) > 0} and B = {x: f(x) < 0} and define the

measures
— [ g=[ e =~ 5= [
ANE E BNE E
then the following hold.

(a) The sets A and B satisfy AN B =0 and AUB =R,
(b) v*(B) =v~(A) =0,

(c) If E C A then v(E) >0 and if E C B then v(E) <0.
(d) v(E) =vH(E) — v (E).

(2) Each of the properties (a)—(d) can be generalized and is significant in its own right.
Taking all four properties together, we say that {A, B} is a Hahn decomposition of v.

(3) Such a decomposition always exists.

Definition 0.4 Let (X, M, ;) and (X, M, u2) be measures. If there exist sets A and B
such that AN B = and AU B = X such that v1(B) = 15(A) = 0 then we say that u; and
W are mutually singular, sometimes denoted p; L pis.



Definition 0.5 Let v be a signed measure. A measurable set A with the property that for
every measurable subset E of A, v(E) > 0 is called a positive set for v, and a measurable set
B with the property that for every measurable subset E of B, v(FE) < 0 is called a negative
set for v. A measurable set C' with the property that for every subset F of C, v(FE) = 0 is
called a null set for v.

Theorem 0.1 (Hahn Decomposition Theorem) Let v be a signed measure on the measurable
space (X, M). Then there is a positive set A and a negative set B such that AN B = () and
AUuB=X.

Claim 1: Every subset of a positive set is positive, and the countable union of positive sets
is positive.

Claim 2: (Hahn’s Lemma) Let E be a measurable set with 0 < v(E) < oo. Then there is
a measurable subset Ey of E that is positive and has positive measure.

Theorem 0.2 (Jordan Decomposition Theorem) Let v be a signed measure on the measur-
able space (X, M). Then there are two mutually singular measures v* and v~ on (X, M)
such that ¥ = v* — v~ and this pair is unique.

Remark 0.5 We call the measure |v| = v + v~ the total variation measure associated to
v. Always |v(E)| < |v|(E) but equality does not hold in general. An equivalent definition
of |v| is the following

12](E) = sup 2 0B

where the supremum is taken over all finite, disjoint collections { Ej}7_; of subsets of E.



