
The Fundamental Theorem of Calculus Part II.

A. Functions of Bounded Variation.

Definition 0.1 Given f on [a, b], a closed, finite interval, and P = {x0, x1, . . . , xk} a
partition of [a, b], we define the variation of f with respect to P by

V (f, P ) =
n∑

k=1

|f(xi)− f(xi−1)|

and the total variation of f on [a, b] by

TV (f) = sup{V (f, P ): P a partition of [a, b]}.

A real-valued function f defined on [a, b] has bounded variation on [a, b] if T (f) <∞.

Examples. (1) If f is monotone on [a, b] then TV (f) = |f(b)− f(a)| <∞, so that f is BV
on [a, b]. This implies that the Cantor function ϕ(x) is BV on [0, 1].

(2) If f is Lipschitz on [a, b] then TV (f) ≤ c(b− a) where c is the Lipschitz constant of f .

(3) f(x) = sin(1/x) on (0, 1] with f(0) = 0 is not BV on [0, 1].

(4) f(x) = x sin(1/x) is continuous on [0, 1] but not BV on [0, 1].

Definition 0.2 Given f BV on [a, b], we define the total variation function of f by TV (f |[a,x]).
Letting TV (f |[a,a]) = 0 and TV (f |[a,b]) = TV (f) we see that the total variation function is
defined for all x ∈ [a, b].

Lemma 0.1 If f is BV on [a, b] then the total variation function of f is real-valued and
increasing on [a, b] and moreover, the function f(x)+TV (f |[a,x]) is real-valued and increasing
on [a, b].

Theorem 0.1 (Jordan) A function f is BV on [a, b] if and only if it can be written as the
difference of two increasing functions on [a, b].
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B. Absolutely Continuous Functions.

Definition 0.3 A real-valued function f on [a, b] is absolutely continuous on [a, b] provided
that for every ε > 0 there is a δ > 0 such that if {(ak, bk)}nk=1 is a finite, disjoint collection
of open intervals in (a, b) then

n∑
k=1

(bk − ak) < δ =⇒
n∑

k=1

|f(bk)− f(ak)| < ε.

Remark 0.1 (1) If f is AC on [a, b] then f is continuous on [a, b]. However, the converse is
false.

(2) Claim: If f is AC on [a, b], then f is BV on [a, b].

(3) Since the function f(x) = x sin(1/x) is continuous on [0, 1] but not BV on [0, 1], it is not
AC on [0, 1].

(4) The Cantor function ϕ(x) is not AC on [0, 1]. We will prove this in detail but the reason
for this is the following. ϕ(x) increases on [0, 1] from ϕ(0) = 0 to ϕ(1) = 1, but its derivative
vanishes off the Cantor set C which has measure zero. This means that ϕ has to do all of
its “climbing” on a set of measure zero, and its total variation over any finite collection of
intervals containing C must be 1. This example means that there are monotone, continuous
functions that are not AC.

(5) If f is Lipschitz on [a, b] then f is AC on [a, b]. However, the converse is false as can be
seen by considering the function f(x) =

√
x on [0, 1]. This function is not Lipschitz but is

AC on [0, 1].

Theorem 0.2 If f is AC on [a, b] then f can be written as the difference of increasing
functions, both absolutely continuous on [a, b].

The key to proving this Theorem is the following claim.

Claim: If f is AC on [a, b] then so is its total variation function.
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C. The Fundamental Theorem Part II.

Theorem 0.3 If f is AC on [a, b] then f is differentiable a.e. on [a, b] and its derivative
satisfies ∫ b

a
f ′ = f(b)− f(a).

The proof of this Theorem relies on the following Lemma.

Lemma 0.2 Suppose that f is continuous on [a, b], and for each h > 0 define the divided
difference function gh(x) on [a, b] by

gh(x) =
f(x+ h)− f(x)

h

(where we assume that f has been extended to [a,∞) by letting f(x) = f(b) for x > b).
Then f is absolutely continuous if and only if the collection {gh}0<h≤1 is uniformly integrable
over [a, b].

In fact we can extend the previous Theorem as follows.

Theorem 0.4 A function f defined on a closed, bounded interval [a, b] is AC on [a, b] if and
only if f is an indefinite integral over [a, b], that is, if and only if f can be written

f(x) = f(a) +
∫ x

a
g

for some function g integrable over [a, b].

Remark 0.2 (1) If f is BV on [a, b] then it follows from the Lebesgue Differentiation The-
orem and Jordan’s Theorem that f is differentiable a.e. and that f ′ is integrable on [a, b].

(2) We would like to say that f(x) =
∫ x
a f
′+f(a) for all x ∈ [a, b], but we know that this is not

necessarily the case. However the previous theorem implies that the function g(x) =
∫ x
a f
′ is

absolutely continuous.

(3) What can we say about the remainder h(x) = f(x) − g(x) = f(x) −
∫ x
a f
′? Since f ′ is

integrable on [a, b], the FTC Part I tells us that h′(x) = 0 a.e. Such a function is called
singular on [a, b]

(4) We conclude that if f is BV on [a, b] then it can be written as f = g + h where g is
absolutely continuous on [a, b] and h is singular on [a, b]. This is known as the Lebesgue
decomposition of f .
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