
Convergence in measure.

A. Definition and Basic Properties.

Definition 0.1 Let {fn} be a sequence of measurable functions, finite a.e., on a set E, and
let f be a measurable function, finite a.e., on E. Then fn → f in measure on E provided
that for every η > 0,

lim
n→∞

m({x ∈ E: |fn(x)− f(x)| > η}) = 0.

Remark 0.1 We assume as part of the definition that fn and f are finite a.e. in order that
the difference |fn(x)− f(x)| makes sense a.e., and we assume that fn and f are measurable
so that the sets defined in the definition are guaranteed to be measurable.

Proposition 0.1 If m(E) < ∞ and fn → f pointwise a.e. on E with f finite a.e., then
fn → f in measure on E.

Remark 0.2 (1) What happens to the above proposition if m(E) =∞?

(2) Does the converse hold? That is, if fn → f in measure does it imply pointwise a.e.
convergence?

(3) We define the dyadic subintervals of [0, 1] as follows: Let Ij,k = [2−jk, 2−j(k + 1)] for
integers j ≥ 0 and k = 0, 1, . . . , 2j − 1. For such j and k we define the injective mapping
(j, k) 7→ n = 2j + k which is onto the natural numbers. If we define fn = χ

Ij,k
where n

corresponds to the pair (j, k), then fn → 0 in measure but fn does not converge to anything
pointwise in the sense that for every x ∈ [0, 1] the sequence {fn(x)} does not converge. Hence
the converse of the proposition fails to hold.

Theorem 0.1 (Riesz) Suppose that fn → f in measure on E. Then there exists a subse-
quence {fnk

} such that fnk
→ f a.e. on E.
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B. Convergence theorems for convergence in measure.

Theorem 0.2 (Vitali Theorem) Let fn be a sequence of non-negative integrable functions

on E. Then
∫

E
fn → 0 as n → ∞ if and only if fn → 0 in measure and {fn} is uniformly

integrable and tight over E.

Theorem 0.3 (Fatou’s Lemma) Let fn be a sequence of non-negative measurable functions
on E. If fn → f in measure on E then∫

E
f ≤ lim inf

n→∞

∫
E
fn.

Remark 0.3 (1) The previous proof of Fatou’s Lemma can be used, but there is a point in
the proof where we invoke the Bounded Convergence Theorem. The proof of the BCT uses
Egoroff’s Theorem which we do not have for convergence in measure. Do we have the BCT
for convergence in measure?

(2) Once Fatou’s Lemma has been established for convergence in measure the other main
convergence theorems, Monotone Convergence Theorem, Dominated Convergence Theorem
also hold. You should check whether or not the proofs in these cases go through for conver-
gence in measure.

C. The space L1(R).

Definition 0.2 For f integrable on R, we define the L1–norm of f to be ‖f‖1 =
∫
R |f |.

Remark 0.4 (1) We can extend the notion of measurable and integrable function to complex
valued functions without too much difficulty. Let f be a function from R to C, the complex
plane. Then we can write f = u+ iv where u and v are real-valued functions.

(2) It is true that f is measurable if and only if both u and v are measurable. Here f
measurable means that the inverse image of open sets in C is measurable.

(3) It is also true that f is integrable if and only if both u and v are integrable. In this
context, integrable means that

∫
R |f | < ∞. Note that |f | is a real valued, nonnegative

function on R. This result follows from the observation that max{|u|, |v|} ≤ |f | ≤ |u|+ |v|.

Remark 0.5 (1) It is not hard to see that ‖ · ‖1 has some of the properties of a norm, that
is, for f and g integrable,

(a) ‖αf‖1 = |α|‖f‖1, for all α ∈ R.

(b) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1.

(c) ‖f‖1 = 0⇐⇒ f = 0, a.e.
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We can define an associated distance function d(f, g) = ‖f − g‖1 on the set of all functions
integrable on R, and that this distance function has some of the properties of a metric.

(2) Note that if we look at the collection of all complex-valued functions integrable on R
then this set forms a vector space under addition of functions and scalar multiplication by
complex numbers.

(3) So we would like to say that the space of functions integrable on R with the L1 norm
forms a normed linear space. However this is not quite correct. The problem is that ‖f‖1 = 0
implies that f = 0 a.e., not that f is identically zero. Hence if f 6= g on a set of measure zero,
then ‖f − g‖1 = 0 so that as far as the L1 norm is concerned, f and g are indistinguishable.

(4) So if we define the relation ∼ on the space of integrable functions by f ∼ g if and only if
‖f − g‖1 = 0 then this defines an equivalence relation on the space of integrable functions.

Definition 0.3 We define L1(R) to be the set of equivalence classes of functions integrable
on R. In this case, the L1-norm defines a norm, and d(f, g) a metric on L1(R). It follows
from this that L1(R) is a normed linear space over C.

Definition 0.4 Recall that a normed linear space is said to be complete if every Cauchy
sequence in the space converges to an element of the space. Recall also that a set is dense in
a normed linear space if every element of the space can be approximated arbitrarily closely
by an element of the set.

Theorem 0.4 (Riesz-Fischer Theorem) L1(R) is complete.

Theorem 0.5 The following families of functions are dense in L1(R).

(a) Simple functions.

(b) Step functions.

(c) Continuous functions with finite support

.
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