Convergence Theorems.

A. Lebesgue integral of a nonnegative function.

Definition 0.1 Let $f \geq 0$ on a measurable set E. Then

$$\int_E f = \sup \left\{ \int_E h \colon h \text{ bounded, measurable, finite support, } 0 \le h \le f \right\}.$$

Remark 0.1 (1) We define the *support* of a measurable function f on E by $\{x \in E: f(x) \neq 0\}$. We say that f has *finite support* if $m(\{x \in E: f(x) \neq 0\}) < \infty$.

(2) The integral defined above exists as an extended real number for any nonnegative measurable function f defined on any measurable set E. So for example, by this definition, $\int_{\mathbf{R}} 1 = \infty$.

(3) The integral defined above is linear and monotone for nonnegative measurable functions. The proof of this is very similar to the proof for bounded functions on sets of finite measure.

B. The General Lebesgue integral.

Definition 0.2 A measurable function f on a set E is *integrable* on E if

$$\int_{E} |f| < \infty$$

where the integral of the nonnegative function |f| is defined above. In this case, we define

$$\int_E f = \int_E f^+ - \int_E f^-.$$

Remark 0.2 (1) Recall that $f^+ = \max\{f, 0\}$ is the positive part of f and that $f^- = -\min\{f, 0\} = (-f)^+$ is the negative part. Hence $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

- (2) Note that if $\int_E |f| < \infty$ then by monotonicity, $\int_E f^+ < \infty$ and $\int_E f^- < \infty$.
- (3) Note that always, $|\int_E f| \le \int_E |f|$ if f is integrable on E.

Theorem 0.1 The general Lebesgue integral \int_E is linear and monotone for integrable functions on E.

1

C. Convergence theorems.

Theorem 0.2 (Fatou's Lemma) Let $\{f_n\}$ be a sequence of nonnegative measurable functions on E and suppose that $f_n \to f$ pointwise a.e. on E. Then

$$\int_{E} f \le \liminf \int_{E} f_{n}.$$

Theorem 0.3 (Monotone Convergence Theorem) Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on E and suppose that $f_n \to f$ pointwise a.e. on E. Then

$$\int_{E} f = \lim_{n} \int_{E} f_{n}.$$

Theorem 0.4 (Beppo Levi's Lemma) Let $\{f_n\}$ be an increasing sequence of nonnegative measurable functions on E and suppose that the sequence of real numbers $\{\int_E f_n\}$ is bounded. Then f_n converges pointwise on E to a measurable function f that is finite a.e, and furthermore

$$\int_{E} f = \lim_{n} \int_{E} f_{n}.$$

Theorem 0.5 (The Lebesgue Dominated Convergence Theorem) Let $\{f_n\}$ be a sequence of measurable functions on E that converge pointwise a.e. on E to the function f. Suppose that there is a function g, integrable on E, such that $|f_n| \leq g$ on E for all n. Then f is also integrable on E and

$$\int_{E} f = \lim_{n} \int_{E} f_{n}.$$

Corollary 0.1 Suppose that f is integrable on E and that we can write $E = \bigcup_{n=1}^{\infty} E_n$ where $\{E_n\}$ is a disjoint sequence of measurable sets. Then

$$\int_{E} f = \sum_{n=1}^{\infty} \int_{E_n} f.$$