Littlewood's Three Principles.

A. Limits of sequences of functions.

Definition 0.1 Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions defined on a set E, f a function defined on E, and A a subset of E.

- (a) We say that f_n converges to f pointwise on A, denoted $f_n \to f$ pointwise, provided that for every $x \in A$, $f_n(x) \to f(x)$ as a sequence of numbers.
- (b) We say that f_n converges to f pointwise almost everywhere on A, denoted $f_n \to f$ a.e., provided that there is a set $B \subseteq A$ such that $f_n \to f$ pointwise on B and m(A-B) = 0.
- (c) We say that f_n converges to f uniformly on A provided that $\sup_{x \in A} |f_n(x) f(x)| \to 0$ as $n \to \infty$.

Proposition 0.1 Suppose that f_n is a sequence of measurable functions on a set E and that $f_n \to f$ a.e. on E. Then f is measurable.

Remark 0.1 (1) Replacing "measurable" with "continuous" in the above proposition makes it false.

- (2) Replacing "measurable" with "Riemann integrable" in the above proposition makes it false.
- (3) Since uniform convergence implies pointwise convergence, the proposition is still true if " $f_n \to f$ a.e." is replaced with " $f_n \to f$ uniformly."

Definition 0.2 A function f is called a *simple function* provided that it is measurable and takes on only finitely many values. If f is simple then there exists a finite collection $\{E_k\}_{k=1}^n$ of measurable sets, and numbers c_1, c_2, \ldots, c_n such that $f(x) = \sum_{k=1}^n c_k \chi_{E_k}$, where χ_A denotes the characteristic or indicator function of the set A. If for each k, $E_k = f^{-1}(\{c_k\})$, then the above sum is called the *canonical representation* of f.

Proposition 0.2 Let f be a measurable, bounded, real-valued function on E. Then given $\epsilon > 0$, there are simple functions φ_{ϵ} and ψ_{ϵ} defined on E with the property that, on E, $\varphi_{\epsilon} \leq f \leq \psi_{\epsilon}$ and $0 \leq \psi_{\epsilon} - \varphi_{\epsilon} < \epsilon$.

Proposition 0.3 An extended real-valued function f defined on a measurable set E is measurable if and only if there is a sequence of simple functions $\{\varphi_n\}$ defined on E such that $\varphi_n \to f$ pointwise on E and where for all $n |\varphi_n| \leq |f|$ on E.

B. Littlewood's Principles.

Remark 0.2 (1) The three principles are:

- Every measurable set is *nearly* the union of a finite collection of disjoint open intervals.
- Every measurable function is *nearly* continuous.
- Every pointwise convergent sequence of functions is nearly uniformly convergent.
- (2) We have seen already the first principle in the result that says: If E is a measurable set with finite measure then for every $\epsilon > 0$ there is a collection $\{I_k\}_{k=1}^n$ of disjoint, open intervals such that if $\mathcal{O} = \bigcup_{k=1}^n I_k$ then $m(E\Delta\mathcal{O}) < \epsilon$.
- (3) The other principles have the same flavor in the sense that there is a set of arbitrarily small measure such that the desirable property is realized off that set.

Theorem 0.1 (Egoroff's Theorem) Let E be a set of finite measure, and $\{f_n\}$ a sequence of measurable functions on E such that $f_n \to f$ pointwise on E. Then given $\epsilon > 0$, there is a closed set F with $F \subseteq E$ such that $f_n \to f$ uniformly on F and $m(E - F) < \epsilon$.

Theorem 0.2 (Lusin's Theorem) Let f be a real-valued, measurable function defined on a set E. Then given $\epsilon > 0$ there is a function g continuous on \mathbf{R} , and a closed set F with $F \subseteq E$ such that f = g on F and $m(E - F) < \epsilon$.