
Sigma Algebras and Borel Sets.

A. σ–Algebras.

Definition 0.1 A collection A of subsets of a set X is a σ-algebra provided that (1) ∅ ∈ A,
(2) if A ∈ A then its complement is in A, and (3) a countable union of sets in A is also in
A.

Remark 0.1 It follows from the definition that a countable intersection of sets in A is also
in A.

Definition 0.2 Let {An}∞n=1 belong to a sigma algebra A. We define

lim sup{An} =
∞⋂
k=1

[ ∞⋃
n=k

An

]
,

and

lim inf{An} =
∞⋃
k=1

[ ∞⋂
n=k

An

]
.

Remark 0.2 (1) lim sup{An} is the set of points that are in infinitely many of the An, and
lim inf{An} is the set of points that fail to be in at most finitely many of the An, in other
words x ∈ lim inf{An} if and only if there is an index k such that x ∈ An for all n ≥ k.

(2) Recall that if {xn} is a bounded sequence of real numbers, then

lim sup
n→∞

{xn} = lim
n→∞

sup
n≥k

xn = inf
n

sup
n≥k

xn

because the sequence yk = supn≥k xn is nonincreasing and bounded below. Also

lim inf
n→∞

{xn} = lim
n→∞

inf
n≥k

xn = sup
n

inf
n≥k

xn

because the sequence yk = infn≥k xn is nondecreasing and bounded above.
If we partially order the sets in the σ-algebra A by inclusion, then for any sequence {An}

of sets,

sup{An} =
∞⋃
n=1

An, and inf{An} =
∞⋂
n=1

An.

With this notation,
lim sup{An} = inf [sup{An}∞n=k]

and
lim inf{An} = sup [inf{An}∞n=k]

in analogy with the definition for sequences of real numbers.

(3) In further analogy with the situation for sequences of real numbers, we have the following
propositions.
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Proposition 0.1 Let {xn} be a sequence of real numbers and let An = (−∞, xn). Then

lim sup{An} = (−∞, x) where x = lim sup{xn}

and
lim inf{An} = (−∞, x) where x = lim inf{xn}.

Proposition 0.2 lim inf{An} ⊆ lim inf{An}.

B. Borel Sets.

Definition 0.3 A set E ⊆ R is an Fσ set provided that it is the countable union of closed
sets and is a Gδ set if it is the countable intersection of open sets. The collection of Borel
sets, denoted B, is the smallest σ-algebra containing the open sets.

Remark 0.3 (1) Every Gδ set is a Borel set. Since the complement of a Gδ set is an Fσ set,
every Fσ set is a Borel set.

(2) Every interval of the form [a, b) is both a Gδ set and an Fσ set and hence is a Borel set.
In fact, the Borel sets can be characterized as the smallest σ-algebra containing intervals of
the form [a, b) for real numbers a and b.

C. Example: Problem 44, Section 1.5.

Claim: Let p be a natural number, p > 1, and x ∈ [0, 1]. Then there is a sequence of
integers {an} where 0 ≤ an < p and such that

x =
∞∑
n=1

an
pn
.

This expansion is unique except when x = q/pn for some natural number q in which case
there are exactly two such expansions.

Proof: What follows in an outline of the proof of the Claim. For 0 ≤ k < p define
I1,k = [k/p, (k+1)/p]. Clearly the intervals I1,k are essentially disjoint in the sense that they
overlap in at most one point, and their union is [0, 1]. Define a1 to be a number such that
x ∈ I1,a1 . The choice of a1 is unique except when x = k/p for some 1 ≤ k < p. If we choose
a1 = k and the sequence required by the Claim is {k, 0, 0, . . .}. If we choose a1 = k− 1 then
the sequence required by the Claim is {k − 1, p − 1, p − 1, . . .}. (Note that for any natural

number k,
∞∑
n=k

p− 1

pn
=

1

pk−1
. This explains why the second sequence works.)

In the case where there is no ambiguity in the choice of a1, define y = x − a1/p and the
intervals I2,k = [k/p2, (k + 1)/p2] for 0 ≤ k < p. Choose a2 so that y ∈ I2,a2 . Ambiguity will
occur only if y = k/p2 for some 1 ≤ k < p and in this case the sequences required are either
{a1, k, 0, 0, . . .} or {a1, k − 1, p− 1, p− 1, . . .}.
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In general we proceed as follows. Assuming that there was no ambiguity in the choice of
a1, a2, . . . , an−1, define y = x −∑n−1

k=1 ak/p
k, and the intervals In,k = [k/pn, (k + 1)/pn] for

0 ≤ k < p. Choose an so that y ∈ In,an . Ambiguity occurs only when y = k/pn for some
1 ≤ k < p, and in this case the sequences required are either {a1, . . . , an−1, k, 0, 0, . . .} or
{a1, . . . , an−1, k − 1, p− 1, p− 1, . . .}.
It remains to show that in fact x =

∑∞
k=1 ak/p

k, and that the converse of the claim is true.

Remark 0.4 (1) If p = 10 then the expansion given above is the familiar decimal expansion
of a number. If p = 2 the expansion is called the binary expansion, and if p = 3 the ternary
expansion.

(2) Later on we will construct the Cantor set C, a set with unusual and interesting properties.
By comparing the construction of C with the above problem, it can be seen that C consists
of all points in [0, 1] that have a ternary expansion such that an 6= 1 for all n.
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