Sigma Algebras and Borel Sets.
A. o—Algebras.

Definition 0.1 A collection A of subsets of a set X is a o-algebra provided that (1) ) € A,
(2) if A € A then its complement is in .4, and (3) a countable union of sets in A is also in

A.

Remark 0.1 It follows from the definition that a countable intersection of sets in A is also

in A.

Definition 0.2 Let {A,}2°, belong to a sigma algebra A. We define
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Remark 0.2 (1) limsup{A,} is the set of points that are in infinitely many of the A,,, and
liminf{A,} is the set of points that fail to be in at most finitely many of the A,, in other
words x € liminf{A,} if and only if there is an index k such that x € A, for all n > k.

(2) Recall that if {z,,} is a bounded sequence of real numbers, then

limsup{x,} = lim supx, = infsupx,
n—oo n—0o0 n>k n n>k

because the sequence y; = sup,,~; , is nonincreasing and bounded below. Also

liminf{z,} = lim inf z,, = sup inf =
WHK7{ n} n—oon>k " npnzk "

because the sequence y;, = inf,,> x,, is nondecreasing and bounded above.
If we partially order the sets in the o-algebra A by inclusion, then for any sequence {4, }
of sets,
sup{4,} = J 4,, and inf{4,} =) A,
n=1 n=1
With this notation,
limsup{A,} = inf [sup{A,},;2,]

and
liminf{A,} = sup [inf{A4,}2,]
in analogy with the definition for sequences of real numbers.

(3) In further analogy with the situation for sequences of real numbers, we have the following
propositions.



Proposition 0.1 Let {z,} be a sequence of real numbers and let A,, = (—o0, z,,). Then
limsup{A,} = (—o0,x) where x = limsup{z,}

and
liminf{A,} = (—oco0,z) where x = liminf{z,}.

Proposition 0.2 liminf{A,} C liminf{A4,}.

B. Borel Sets.

Definition 0.3 A set £ C R is an F), set provided that it is the countable union of closed
sets and is a Gy set if it is the countable intersection of open sets. The collection of Borel
sets, denoted B, is the smallest o-algebra containing the open sets.

Remark 0.3 (1) Every Gj set is a Borel set. Since the complement of a G set is an F, set,
every F, set is a Borel set.

(2) Every interval of the form [a, b) is both a Gy set and an F, set and hence is a Borel set.
In fact, the Borel sets can be characterized as the smallest o-algebra containing intervals of
the form [a, b) for real numbers a and b.

C. Example: Problem 44, Section 1.5.

Claim: Let p be a natural number, p > 1, and = € [0,1]. Then there is a sequence of
integers {a, } where 0 < a,, < p and such that
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This expansion is unique except when z = ¢/p"™ for some natural number ¢ in which case
there are exactly two such expansions.

Proof: What follows in an outline of the proof of the Claim. For 0 < k < p define
Iy = [k/p,(k+1)/p]. Clearly the intervals I; ;, are essentially disjoint in the sense that they
overlap in at most one point, and their union is [0, 1]. Define a; to be a number such that
x € I 4,. The choice of a; is unique except when x = k/p for some 1 < k < p. If we choose
a; = k and the sequence required by the Claim is {k,0,0,...}. If we choose a; = k — 1 then
the sequence required by the Claim is {k — 1,p — 1,p — 1,...}. (Note that for any natural

> p—1 1
number £k, Z p = ——- This explains why the second sequence works.)
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In the case where there is no ambiguity in the choice of a;, define y = = — a;/p and the
intervals Io; = [k/p?, (k +1)/p?] for 0 < k < p. Choose ay so that y € I5,,. Ambiguity will
occur only if y = k/p? for some 1 < k < p and in this case the sequences required are either
{a1,k,0,0,...} or {a;,k—1,p—1,p—1,...}.



In general we proceed as follows. Assuming that there was no ambiguity in the choice of

ai, g, ..., ay_1, define y = x — 3771 ap/p*, and the intervals I, = [k/p", (k + 1)/p"] for
0 < k < p. Choose a, so that y € I,,,. Ambiguity occurs only when y = k/p™ for some
1 < k < p, and in this case the sequences required are either {ay,...,a,-1,%,0,0,...} or

{at,...;an_1, k=1, p—1,p—1,...}.
It remains to show that in fact z = 323°, ax/p®, and that the converse of the claim is true.

Remark 0.4 (1) If p = 10 then the expansion given above is the familiar decimal expansion
of a number. If p = 2 the expansion is called the binary expansion, and if p = 3 the ternary
expansion.

(2) Later on we will construct the Cantor set C, a set with unusual and interesting properties.
By comparing the construction of C' with the above problem, it can be seen that C' consists
of all points in [0, 1] that have a ternary expansion such that a, # 1 for all n.



