Math 776 – Spring 2011 – Homework 8

Problems 1–3 are taken from Stein and Shakarchi, Real Analysis, Princeton University Press (2005) and are due on Monday April 11.

1. (p. 146, Exercise 4) Prove that if \(f \) is integrable on \(\mathbb{R} \), and \(f \) is not identically zero, then there is a constant \(c > 0 \) such that for all \(x \) with \(|x| \geq 1 \), \(f^*(x) \geq c|x|^{-1} \). Conclude that \(f^* \) is not integrable on \(\mathbb{R} \). [Hint: Use the fact that for some interval \(I \) centered at the origin, \(\int_I |f| > 0 \).]

2. (p. 146, Exercise 5) Consider the function on \(\mathbb{R} \) defined by
 \[
 f(x) = \begin{cases}
 1/\sqrt{|x|(|\log 1/|x||)^2} & \text{if } |x| \leq 1/2 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 (a) Verify that \(f \) is integrable on \(\mathbb{R} \).
 (b) Show that for some \(c > 0 \) and all \(|x| \leq 1/2 \),
 \[
 f^*(x) \geq c|x|(|\log 1/|x||)^2.
 \]
 Conclude that \(f^* \) is not locally integrable.

3. (p. 152, Problem 2) Suppose that \(I_1, I_2, \ldots, I_N \) is a given finite collection of open intervals in \(\mathbb{R} \). then there are two finite sub-collections \(I'_1, I'_2, \ldots, I'_K \) and \(I''_1, I''_2, \ldots, I''_L \) such that each sub-collection consists of mutually disjoint intervals and
 \[
 \bigcup_{j=1}^N I_j = \bigcup_{k=1}^K I'_k \cup \bigcup_{l=1}^L I''_l.
 \]
 Conclude from this that given a finite collection of open intervals \(\{I_j\}_{j=1}^N \), we can find a disjoint sub-collection \(\{I_{jk}\}_{k=1}^K \) such that
 \[
 m\left(\bigcup_{j=1}^N I_j\right) \leq 2 \sum_{k=1}^K m(I_{jk}).
 \]
 [Hint: Choose \(I'_1 \) to be an interval whose left endpoint is as far left as possible. Discard all intervals contained in \(I'_1 \). If the remaining intervals are disjoint from \(I'_1 \), select again an interval as far to the left as possible and call it \(I'_2 \). Otherwise choose an interval that intersects \(I'_1 \), but reaches out to the right as far as possible, and call this interval \(I''_1 \). Repeat this procedure.]
