Zak Transform and the Balian–Low Theorem.

The Zak transform is an effective tool for analyzing Gabor systems when $\alpha\beta = 1$, though it is also very useful when $\alpha\beta$ is rational. In this lecture we will show how this tool can be used to prove two important theorems about Gabor systems.

A. Basic Properties of the Zak Transform.

Definition 1 Given $\alpha > 0$ the Zak transform is defined formally as

$$Z_{\alpha}f(x,\omega) = \sum_{k} f(x-\alpha k) e^{2\pi i \alpha k x}.$$

Remarks. 1. $Z_{\alpha}f(x,\omega)$ is clearly defined, for example, for functions f(x) that are continuous and compactly supported, in which case the sum defining $Z_{\alpha}f$ is finite for each fixed x. In general, for each fixed x, $Z_{\alpha}f(x,\omega)$ is the $1/\alpha$ -periodic Fourier series whose coefficients are given by $\{f(x - \alpha k)\}_{k \in \mathbb{Z}}$.

2. Again reasoning formally, $Z_{\alpha}f$ satisfies the quasi-periodicity relations, namely

$$Z_{\alpha}f(x+\alpha,\omega) = e^{2\pi i\alpha\omega} Z_{\alpha}f(x,\omega)$$
 and $Z_{\alpha}f(x,\omega+1/\alpha) = Z_{\alpha}f(x,\omega).$

Hence $Z_{\alpha}f(x,\omega)$ is completely determined by its values on the cube $Q = [0,\alpha] \times [0,1/\alpha]$ or any cube of the form $Q + (n\alpha, m/\alpha), m, n \in \mathbb{Z}$.

- **Lemma 1** (a) If $f \in W(\mathbf{R})$, then $Z_{\alpha}f(x,\omega)$ converges uniformly on \mathbf{R}^2 to a bounded function. Moreover, we have that $||Z_{\alpha}f||_{\infty} \leq ||f||_{W,\alpha}$.
 - (b) If $f \in W(\mathbf{R})$ is also continuous on \mathbf{R} , then $Z_{\alpha}f(x,\omega)$ converges uniformly on \mathbf{R}^2 to a bounded function continuous on all of \mathbf{R}^2 .

Examples. 1. If $f = \mathbf{1}_{[0,\alpha)}$ then $Z_{\alpha}f(x,\omega) = e^{2\pi i n\alpha\omega}$ where n = n(x) is the unique integer such that $x \in [\alpha n, \alpha(n+1))$, or in other words, n is the greatest integer less than or equal to x/α . In particular, when $x \in [0, \alpha)$, n = 0 so that on $Q, Z_{\alpha}f(x, \omega) = 1$.

2. If $\alpha = 1$ and $\varphi(x) = e^{-\pi x^2}$ then $Z_{\alpha}f(x,\omega) = \sum_k e^{-\pi(x-k)^2} e^{2\pi i k \omega}$ and it is easy to see that $Z_{\alpha}f(x,\omega)$ is continuous on \mathbf{R}^2 and $Z_{\alpha}f(1/2,1/2) = 0$.

Lemma 2 (Inversion, Isometry and the Fourier Transform) For f sufficiently regular,

(a)
$$f(x) = \alpha \int_0^{1/\alpha} Z_\alpha f(x,\omega) \, d\omega.$$

(b)
$$\hat{f}(\omega) = \int_0^\alpha Z_\alpha f(x,\omega) \, e^{2\pi i x \omega} \, dx.$$

(c)
$$\|Z_\alpha f\|_{L^2(Q)}^2 = \frac{1}{\alpha} \|f\|_2^2.$$

(d)
$$Z_{\alpha}f(x,\omega) = \frac{1}{\alpha} e^{2\pi i x \omega} Z_{1/\alpha}\widehat{f}(\omega,-x).$$

Lemma 3 Suppose $\alpha\beta = 1$ and $k, n \in \mathbb{Z}$. Then

$$Z_{\alpha}(T_{\alpha k} M_{\beta n} f)(x \,\omega) = e^{2\pi i n x/\alpha} e^{-2\pi i k \alpha \omega} Z_{\alpha} f(x, \omega).$$

Example. $Z_{\alpha}(T_{\alpha k} M_{\beta n} \mathbf{1}_{[0,\alpha)})(x \omega) = e^{2\pi i n x/\alpha} e^{-2\pi i k \alpha \omega}$ for $(x, \omega) \in Q$. Recall that

 $\{\alpha^{-1/2}T_{\alpha k}M_{\beta n}\mathbf{1}_{[0,\alpha)}\}_{k,n\in\mathbf{Z}}$

is an orthonormal basis for $L^2(\mathbf{R})$ and note that $\{e^{2\pi i n x/\alpha} e^{-2\pi i k \alpha \omega}\}_{k,n \in \mathbf{Z}}$ is an orthonormal basis for $L^2(Q)$. Hence Z_{α} maps one orthonormal basis onto another (up to the constant $\alpha^{-1/2}$) and this identifies Z_{α} as a unitary operator and provides another proof of the previous Lemma.

B. The Zak Transform and Gabor frames.

Theorem 1 Let $g, \gamma \in L^2(\mathbf{R})$ and let $\alpha\beta = 1$. Then

$$Z_{\alpha} S_{g,\gamma} f = \alpha \, \overline{Z_{\alpha}g} \, \mathbf{Z}_{\alpha} \gamma \, Z_{\alpha} f.$$

Remarks. 1. The above theorem says that whenever $\alpha\beta = 1$ the Gabor frame operator reduces to a multiplication operator in the "Zak transform domain."

2. In this case, computing the inverse frame operator $S_{g,g}^{-1}$ for the Gabor frame $\mathcal{G}(g,\alpha,1/\alpha)$ is trivial namely

$$Z_{\alpha} S_{q,q}^{-1} f = \alpha^{-1} \left(\overline{Z_{\alpha} g} \, \mathbf{Z}_{\alpha} \gamma \right)^{-1} Z_{\alpha} f.$$

It is also possible to make statements about the frame and basis properties of Gabor systems at the "critical density" $\alpha\beta = 1$.

Corollary 1 Let $g, \gamma \in L^2(\mathbf{R})$ and let $\alpha\beta = 1$. Then

- (a) $S_{q,\gamma}$ is bounded if and only if $\overline{Z_{\alpha}g} \mathbf{Z}_{\alpha}\gamma$ is bounded on Q.
- (b) $\mathcal{G}(g, \alpha, \beta)$ is a frame (and hence a Reisz basis) for $L^2(\mathbf{R})$ if and only if there exist constants a, b > 0 such that $a \leq |Z_{\alpha}g(x, \omega)| \leq b$ on Q.
- (c) $\mathcal{G}(g,\alpha,\beta)$ is an orthonormal basis for $L^2(\mathbf{R})$ if and only if $|Z_{\alpha}g(x,\omega)| = \alpha^{-1/2}$ on Q.

Corollary 2 With $\varphi(x) = e^{-\pi x^2}$, $\mathcal{G}(\varphi, \alpha, 1/\alpha)$ is not a frame for any $\alpha > 0$.

C. The Balian-Low Theorem.

Lemma 4 If $Z_{\alpha}f(x,\omega)$ is continuous on \mathbb{R}^2 , then it has a zero in Q.

Theorem 2 If either g or \hat{g} are continuous functions in $W(\mathbf{R})$, then $\mathcal{G}(g, \alpha, 1/\alpha)$ cannot be a frame (and hence not a Riesz basis) for $L^2(\mathbf{R})$.

Remark. 1. The above theorem says that in order to have a Gabor Riesz basis for $L^2(\mathbf{R})$ then the window g cannot be "well localized" in both time and frequency. Here "well localized" is taken to mean that g and \hat{g} must both be continuous and in $W(\mathbf{R})$.

2. A classical result in this direction that bears a closer relation to the classical uncertainty principle is referred to as the Balian–Low Theorem. This result says that if the window g generates a Gabor Riesz basis then it must *maximize* the uncertainty principle, that is, the variance of either g or of \hat{g} must be infinite.

Theorem 3 (Balian–Low Theorem) If $\mathcal{G}(g, \alpha, 1/\alpha)$ is a frame for $L^2(\mathbf{R})$ then

 $\|x g(x)\|_2 \|\omega \widehat{g}(\omega)\|_2 = \infty.$