Gabor Systems: Existence and Basic Properties.

A. Definitions and basic properties.

Definition 1 Given $a, b \in \mathbf{R}$ recall that the time-shift and frequency-shift operators T_a and M_b (respectively) on $L^2(\mathbf{R})$ are given by $T_a f(x) = f(x-a)$ and $M_b f(x) = e^{2\pi i b x} f(x)$. Note that $(M_b f)^{\wedge}(\gamma) = \hat{f}(\gamma - b)$.

Given a function $g \in L^2(\mathbf{R})$ and parameters $\alpha, \beta > 0$, the collection

$$\mathcal{G}(g,\alpha,\beta) = \{T_{\alpha k} M_{\beta n} g: k, n \in \mathbf{Z}\}$$

is called a Gabor system.

Remarks.

1. The function g is referred to as the window function for the Gabor system, and the numbers α and β are the time and frequency-shift parameters respectively and are referred to as the *lattice parameters* collectively.

2. Historically, Gabor systems were introduced by D. Gabor who sought representations of functions in terms of time-frequency atoms with minimal support in the time-frequency plane. Consequently he proposed using $g(x) = \varphi(x) = e^{-\pi x^2}$ which minimizes the uncertainty principle inequality and is concentrated in the unit square of the time frequency plane centered at the origin. Gabor wanted representations of functions f of the form $f = \sum_k \sum_n c_{k,n} T_k M_n g$.

3. The questions Gabor raised but did not answer included: (a) How do the coefficients $\{c_{k,n}\}$ depend on the function f? (b) Are the coefficients in such a representation unique? (c) Do the coefficients depend in a stable way on the function f? It turns out that the most convenient setting in which to answer these questions uses the notion of a frame.

Definition 2 If the Gabor system $\mathcal{G}(g, \alpha, \beta)$ is a frame for $L^2(\mathbf{R})$ it is referred to as a Gabor frame. This means that there are constants $0 < A \leq B$ such that for all $f \in L^2(\mathbf{R})$,

$$A \|f\|^2 \le \sum_k \sum_n |\langle f, T_{\alpha k} M_{\beta n} g \rangle|^2 \le B \|f\|^2.$$

Associated to a Gabor frame is the Gabor frame operator S given by

$$Sf = \sum_{k} \sum_{n} \langle f, T_{\alpha k} M_{\beta n} g \rangle T_{\alpha k} M_{\beta n} g.$$

Lemma 1 The Gabor frame operator associated to a Gabor frame $\mathcal{G}(g, \alpha, \beta)$ commutes with the operators $T_{\alpha k}$ and $M_{\beta n}$ for all $k, n \in \mathbb{Z}$.

Corollary 1 The dual frame associated to the Gabor frame $\mathcal{G}(g, \alpha, \beta)$ has the form $\mathcal{G}(S^{-1}g, \alpha, \beta)$, where S is the Gabor frame operator associated to the original frame. In other words, the dual frame to a Gabor frame is another Gabor frame. We call the function $\gamma = S^{-1}g$ the dual window for the Gabor frame.

- **Lemma 2** (a) The Gabor system $\mathcal{G}(g, \alpha, \beta)$ is a frame for $L^2(\mathbf{R})$ if and only if the system $\mathcal{G}(\hat{g}, \beta, \alpha)$ is a frame for $L^2(\mathbf{R})$. Moreover each frame has the same frame bounds.
 - (b) The Gabor system G(g, α, β) is a frame for L²(**R**) if and only if the system G(D_ag, α', β') is a frame for L²(**R**) where D_a is the dilation operator D_ag(x) = a^{1/2}g(ax), α'β' = αβ and a = α/α' = β'/β. In other words, determining the existence of Gabor frames for given lattice parameters α, β depends only on the product αβ and not on the value of the parameters themselves.

B. Existence of Gabor frames.

Example. For some a > 0, let $g(x) = \alpha^{-1/2} \mathbf{1}_{[0,\alpha]}$. Then the Gabor system $\mathcal{G}(g, \alpha, \beta)$ is an orthonormal basis for $L^2(\mathbf{R})$ if $\alpha\beta = 1$.

Remark. Note that in this case if $\alpha\beta > 1$ then the system $\mathcal{G}(g, \alpha, \beta)$ is incomplete and that if $\alpha\beta < 1$ then the system is overcomplete, that is, a function in $L^2(\mathbf{R})$ has multiple representations in terms of the frame elements. More specifically it means that if a function is removed from the system, the remaining functions also form a frame for $L^2(\mathbf{R})$.

Theorem 1 Let $g \in L^2(\mathbf{R})$ and $\alpha, \beta > 0$ be such that:

- (a) there exist constants A, B such that $0 < a \le \sum_{n} |g(x n\alpha)|^2 \le b < \infty$, and
- (a) g has compact support, with $\operatorname{supp}(g) \subset I \subset \mathbf{R}$, where I is some interval of length $1/\beta$. Then $\mathcal{G}(g, \alpha, \beta)$ is a Gabor frame for $L^2(\mathbf{R})$ with frame bounds $\beta^{-1}a, \beta^{-1}b$.

Corollary 2 Suppose that in addition to the hypotheses of the Theorem, g satisfies $0 < \inf_{x \in I} |g(x)| \le \sup_{x \in I} |g(x)| < \infty$. Then with $\alpha\beta = 1$, $\mathcal{G}(g, \alpha, \beta)$ is a Riesz basis for $L^2(\mathbf{R})$.

Remark. Note that if in the above theorem g is continuous on \mathbf{R} , then in order for $\mathcal{G}(g, \alpha, \beta)$ to be a Gabor frame we must have $\alpha\beta < 1$, and that if $\alpha\beta > 1$ the Gabor system is incomplete in $L^2(\mathbf{R})$. If $\alpha\beta = 1$ then at best the Gabor system will be complete but will lack a lower frame bound.

Theorem 2 For $\mathcal{G}(g, \alpha, \beta)$ to be a Gabor frame for $L^2(\mathbf{R})$ it is necessary (but not sufficient) that there be constants a, b > 0 such that $a \leq \sum_{n} |g(x - n\alpha)|^2 \leq b$.

C. Representation of the Gabor frame operator.

Definition 3 A function g is said to be in the space $W(L^{\infty}, L^1) = W(\mathbf{R})$ provided that

$$||g||_W = \sum_{n \in \mathbf{Z}} \sup_{x \in [0,1]} |g(x-n)| < \infty.$$

Note that we could also define the norm as

$$\|g\|_{W,\alpha} = \sum_{n \in \mathbf{Z}} \sup_{x \in [0,\alpha]} |g(x - \alpha n)|$$

in the sense that the first quantity is finite if and only if the other one is. Indeed we have the inequalities

$$||g||_{W,\alpha'} \le 2 ||g||_{W,\alpha}$$
 and $||g||_{W,\alpha} \le M ||g||_{W,\alpha'}$

whenever $\alpha' \geq \alpha$ where M is the maximum number of intervals $[0, \alpha] + n$ that intersect any interval of the form $[0, \alpha'] + k$.

Definition 4 For $g \in L^2(\mathbf{R})$, $\alpha, \beta > 0$ and $n \in \mathbf{Z}$, define the correlation function $G_n(x)$ by

$$G_n(x) = \sum_k \overline{g(x - n/\beta - \alpha k)} g(x - \alpha k).$$

Lemma 3 If $g \in W(\mathbf{R})$ then

- (a) $\sum_{n} \|G_n\|_{\infty} \le C(\alpha, \beta) \|g\|_{W}^{2}$,
- (b) for each fixed $\alpha > 0$, $\lim_{\beta \to 0^+} \sum_{n \neq 0} \|G_n\|_{\infty} = 0$.

Theorem 3 If $g \in W(\mathbf{R})$ and $\alpha, \beta > 0$, then the frame operator S associated to $\mathcal{G}(g, \alpha, \beta)$ is given by

$$Sf(x) = \frac{1}{\beta} \sum_{n} G_n(x) f(x - n/\beta).$$

In particular, S is bounded with $||S|| \leq \frac{1}{\beta} \sum_{n} ||G_n||_{\infty}$.

Theorem 4 Let $g \in W(\mathbf{R})$, $\alpha > 0$ and suppose that there are constants a, b > 0 such that

$$a \le \sum_{k} |g(x - \alpha k)|^2 \le b.$$

Then there is a $\beta_0 > 0$ such that $\mathcal{G}(g, \alpha, \beta)$ is a Gabor frame for all $0 < \beta \leq \beta_0$.

Examples.

1. Suppose that $g \in L^2(\mathbf{R})$ satisfies the hypotheses of Theorem 1. In this case the frame operator S is given simply by $Sf(x) = \beta^{-1} f(x) G_0(x)$ so that S is an isomorphism of $L^2(\mathbf{R})$ if and only if $G_0(x)$ is bounded above and away from zero. Also in this case S^{-1} is given by $S^{-1}f(x) = \beta f(x) G_0^{-1}(x)$.

2. It is also clear from the previous theorem that for any $\alpha > 0$, $\mathcal{G}(\varphi, \alpha, \beta)$, where $\varphi(x) = e^{-\pi x^2}$ is a Gabor frame for all $\beta > 0$ small enough. An interesting question is: How large can β be in order for the Gabor system to be a frame?