
Frames and Riesz Bases in Hilbert Space.

A. Nonorthogonal Bases in Finite Dimensions.

Definition 1 A finite collection of elements, {xi}ni=1 in a linear space L is linearly indepen-
dent if any collection of scalars {αi}ni=1 satisfying

∑n
i=1 αi xi = 0 must all be zero. Otherwise,

the collection {xi}ni=1 is linearly dependent.
A linear space is n–dimensional if there exist n linearly independent elements in L but

every set of n + 1 elements is linearly dependent. If there is a set of n linearly independent
elements for every n, then L is infinite–dimensional.

A set of n linearly independent elements in an n–dimensional linear space is a basis for
that space.

Remarks.

1. If {vk}nk=1 is a basis for the n–dimensional linear space then every x ∈ L can be written
uniquely as x =

∑
k αk vk. Every such linear space has a basis and any n–dimensional linear

space L (over R or C) is isomorphic to Rn (or to Cn). Also by means of this isomorphism,
any such L can be equipped with an inner product, so that we can talk about orthogonality
of such vectors. From now on we will treat L as though it were Rn or Cn.

2. Any finite-dimensional linear space L with an inner product has an orthonormal basis.
This can be obtained from any basis using the Gram-Schmidt process.

3. Given two bases for L, {vk}nk=1 and {wk}nk=1 there is a unique n × n matrix T with the
property that if α = (α1, . . . , αn) contains the expansion coefficients of x in the first basis,
then Tα contains the expansion coefficients of x in the second. T is called the change-of-basis
matrix.

4. Any basis {vk}nk=1 for Rn is the image under an invertible linear transformation of an
orthonormal basis.

B. Riesz Bases in Hilbert Spaces.

Definition 2 A collection of vectors {xk}k in a Hilbert space H is a Riesz basis for H if
it is the image of an orthonormal basis for H under an invertible linear transformation. In
other words, if there is an orthonormal basis {ek} for H and an invertible transformation T
such that Tek = xk for all k.

Theorem 1 Let {xk} be a collection of vectors in a Hilbert space H.

(a) If {xk} is a Riesz basis for H then there is a unique collection {yk} such that 〈xk, yk〉 =
δk, that is such that {yk} is biorthogonal to {xk}. In this case {yk} is also a Riesz basis.

(b) If {xk} is a Riesz basis for H then there are constants 0 ≤ A ≤ B such that for
all x ∈ H, A ‖x‖2 ≤

∑
k

|〈x, xk〉|2 ≤ B ≤ ‖x‖2. This inequality is called the frame

inequality.
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(c) {xk} is a Riesz basis for H if and only if there are constants 0 ≤ A ≤ B such that for

all finite sequences {αk}, A
∑
k

|αk|2 ≤
∥∥∥∥∑
k

αk xk

∥∥∥∥2 ≤ B
∑
k

|αk|2.

(d) If {xk} is a Riesz basis for H then for each x ∈ H there is a unique collection of scalars
{αk} such that x =

∑
k αk xk and

∑
k |αk|2 ≤ ∞.

Remarks.

1. Note that if {xk} were an orthonormal basis then (a) would be obvious (just take yk = xk)
and (b) would hold with A = B = 1 (Plancherel’s formula). In fact we have seen that if
{xk} satisfies the frame inequality with A = B = 1 and if ‖xk‖ = 1 for all k, then {xk} is
an orthonormal basis for H.

2. A different way to characterize some of these properties is to think of two operators
associated to a Riesz basis {xk}. The first is the analysis operator T :H → l2 given by
T (x) = {〈x, xk〉}k. That T (x) ∈ l2 (and further that T is a bounded linear operator) follows
from the frame inequality. The second is the synthesis operator from l2 → H given by
{αk} 7→

∑
k αk xk. Since the synthesis operator is the adjoint of T , we will just denote it by

T ∗.

3. In this language, {xk} is a Riesz basis if and only if T is a bounded linear bijection from H
onto l2. In other words there is a one to one correspondence between sequences of the form
{〈x, xk〉}k and sequences in l2. In other words, every l2 sequence gets “hit” by something
in H through the analysis operator. In still other words, this statement is equivalent to (c)
above.

Definition 3 Let H be an infinite-dimensional Hilbert space. An infinite collection {xk}
of vectors in H is (finnitely) linearly independent if every finite subset of {xk} is linearly
independent. It is ω–linearly independent if a sequence {αk} such that

∑
k αk xk converges

in the norm of H to 0 must be identically zero.

Lemma 1 If {xk} is ω–linearly independent then it is linearly independent. However a
sequence can be finitely linearly independent without being ω–linearly independent.

Remark.

If {xk} is an orthonormal basis, then it is ω–linearly independent. If {xk} is a Riesz basis,
then it is ω–linearly independent. Both of these facts follow from the assertion that an
orthonormal or Riesz basis has a biorthogonal sequence.

Theorem 2 A sequence {xk} in a Hilbert space H is a Riesz basis for H if and only if {xk}
satisfies the frame condition and is ω–linearly independent.

C. Frames in Hilbert Spaces.
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Definition 4 A sequence {xk} in a Hilbert space H is a frame if there exist numbers A,B >
0 such that for all x ∈ H we have

A‖x‖2 ≤
∑
k

|〈x, xn〉|2 ≤ B‖x‖2.

The numbers A,B are called the frame bounds. The frame is tight if A = B. The frame is
exact if it ceases to be a frame whenever any single element is deleted from the sequence.

Remarks.

1. From the Plancherel formula we see that every orthonormal basis is a tight exact frame
with A = B = 1. For orthonormal bases, the Plancherel formula is equivalent to the ba-
sis property, which gives a decomposition of the Hilbert space. The weakened form of the
Plancherel formula satisfied by frames also gives a decomposition, although the representa-
tions need not be unique.

2. A frame is a complete set since if x ∈ H satisfies 〈x, xn〉 = 0 for all n, then A‖x‖2 ≤∑ |〈x, xn〉|2 = 0, so x = 0.

3. A tight frame need not be exact and vice versa. For example let {en}∞n=1 be an orthonormal
basis for H. Then

(a) {e1, e1, e2, e2, e3, e3, · · ·} is a tight inexact frame with bounds A = B = 2, but is not an
orthonormal basis, although it contains one.

(b)
{
e1, e2/2, e3/3, · · ·

}
is a complete orthogonal sequence, but not a frame.

(c)
{
e1, e2/

√
2, e2/

√
2, e3/

√
3, e3/

√
3, e3/

√
3, · · ·

}
is a tight frame with bounds A = B = 1

but is not an exact sequence, and no nonredundant subsequence is a frame.

(d) {2e1, e2, e3, · · ·} is an exact frame with bounds A = 1, B = 2 and is not a tight frame.

Theorem 3 Given a sequence {xn} in a Hilbert space H, the following two statements are
equivalent:

(a) {xn} is a frame with bounds A,B.

(b) Sx =
∑〈x, xn〉xn is a bounded linear operator with AI ≤ S ≤ BI, called the frame

operator for {xn}.

Corollary 1 (a) S is invertible and B−1I ≤ S−1 ≤ A−1I.

(b) {S−1xn} is a frame with bounds B−1, A−1, called the dual frame of {xn}.

(c) Every x ∈ H can be written x =
∑〈x, S−1xn〉xn =

∑〈x, xn〉S−1xn.
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Theorem 4 Given a frame {xn} and given x ∈ H let an = 〈x, S−1xn〉, so x =
∑
anxn. If it

is possible to find other scalars cn such that x =
∑
cnxn then

∑ |cn|2 =
∑ |an|2 +

∑ |an−cn|2.
Theorem 5 The removal of a vector from a frame leaves either a frame or an incomplete
set. In particular, if for a given m, 〈xm, S−1xm〉 6= 1 then {xn}n 6=m is a frame; and if
〈xm, S−1xm〉 = 1 then {xn}n6=m is not complete in H.

Corollary 2 If {xn} is an exact frame, then {xn} and {S−1xn} are biorthogonal, i.e.,
〈xm, S−1xn〉 = δmn.

Theorem 6 A sequence {xn} in a Hilbert space H is an exact frame for H if and only if it
is a Riesz basis for H.

D. Example: Nonharmonic Fourier Series.

One illustrative way to generate examples of Riesz bases and frames is as “perturbations”
of orthonormal bases. One classic result in this direction is the following

Theorem 7 (Paley-Wiener) Let {ek} be an orthonormal basis for the Hilbert space H and
suppose that {xk} is a sequence in H with the property that for some 0 ≤ λ < 1,∥∥∥∥∑

k

αk(ek − xk)
∥∥∥∥ ≤ λ

(∑
k

|αk|2
)1/2

for every finite sequence {αk}. Then {xk} is a Riesz basis for H.

The proof of this theorem uses the following important result from operator theory.

Lemma 2 A bounded linear operator T on a Hilbert space is invertible whenever ‖I−T‖ < 1.

One application of the theorem of Paley and Wiener is to the problem of nonharmonic
Fourier series. We know that the collection {e2πint}n∈Z is an orthonormal basis for L2[0, 1].
What are the basis properties of collections of the form {e2πiλnt}n∈Z where {λn} is a sequence
of real or complex numbers?

The following result follows directly from the above theorem of Paley and Wiener.

Theorem 8 There is an ε > 0 such that whenever |λn − n| < ε then {e2πiλnt}n∈Z is a Riesz
basis for L2[0, 1].

An interesting question is: What is the largest value of ε for which the above theorem is
valid? The answer is ε = 1/4. This result is known as the Kadec 1/4 theorem. Implicit in
this solution is the statement that the theorem fails if ε ≥ 1/4. In fact the following is true.

Theorem 9 The collection {e±2πi(n−1/4)t}∞n=1 is complete in L2[0, 1].

This implies that the collection {e2πiλnt}n∈Z where λn = n−1/4 if n > 0, n+1/4 if n < 0
and 0 if n = 0 is not a Riesz basis for L2[0, 1].

In terms of frames of exponentials, the following result is due to Duffin and Schaeffer.

Theorem 10 Suppose there are constants L > 0 and ε > 0 such that (1) for all n, |λn−n| <
L, and (2) for all n 6= m, |λn − λm| ≥ ε. Then the collection {e2πiλnt}n∈Z is a frame for
L2[0, γ] for all 0 ≤ γ < 1.
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