Frames and Riesz Bases in Hilbert Space.

A. Nonorthogonal Bases in Finite Dimensions.

Definition 1 A finite collection of elements, {x;}!, in a linear space L is linearly indepen-
dent if any collection of scalars {c;}1 | satisfying >-"_ c; x; = 0 must all be zero. Otherwise,
the collection {x;}_, is linearly dependent.

A linear space is n—dimensional if there exist n linearly independent elements in L but
every set of n + 1 elements is linearly dependent. If there is a set of n linearly independent
elements for every n, then L is infinite-dimensional.

A set of n linearly independent elements in an n—dimensional linear space is a basis for
that space.

Remarks.

1. If {vg}7_, is a basis for the n—dimensional linear space then every = € L can be written
uniquely as x = >, ap vg. Every such linear space has a basis and any n—dimensional linear
space L (over R or C) is isomorphic to R™ (or to C"). Also by means of this isomorphism,
any such L can be equipped with an inner product, so that we can talk about orthogonality
of such vectors. From now on we will treat L as though it were R"™ or C™.

2. Any finite-dimensional linear space L with an inner product has an orthonormal basis.
This can be obtained from any basis using the Gram-Schmidt process.

3. Given two bases for L, {vy}7_, and {wy}}_, there is a unique n x n matrix 7" with the
property that if & = («y, ..., a;,) contains the expansion coefficients of z in the first basis,
then T'ar contains the expansion coefficients of = in the second. T is called the change-of-basis
matrix.

4. Any basis {vg}7_; for R™ is the image under an invertible linear transformation of an
orthonormal basis.

B. Riesz Bases in Hilbert Spaces.

Definition 2 A collection of vectors {zy}y in a Hilbert space H is a Riesz basis for H if
it 18 the image of an orthonormal basis for H under an invertible linear transformation. In
other words, if there is an orthonormal basis {ey.} for H and an invertible transformation T
such that Tey, = xy, for all k.

Theorem 1 Let {x}} be a collection of vectors in a Hilbert space H .

(a) If{xx} is a Riesz basis for H then there is a unique collection {yx} such that (xg,yr) =
Ok, that is such that {yx} is biorthogonal to {zy}. In this case {yi} is also a Riesz basis.

(b) If {xx} is a Riesz basis for H then there are constants 0 < A < B such that for
all v € H, Allz||> <Y [z, 2))* < B < ||z||>. This inequality is called the frame
k

inequality.



(¢) {zx} is a Riesz basis for H if and only if there are constants 0 < A < B such that for
2
all finite sequences {au}, A D |aw® < |D ara|| < B Jal”.
k k k

(d) If{x1} is a Riesz basis for H then for each x € H there is a unique collection of scalars
{ar} such that x = 3, ap x1, and 3y |ag|?* < oo.

Remarks.

1. Note that if {x}} were an orthonormal basis then (a) would be obvious (just take y, = zy)
and (b) would hold with A = B = 1 (Plancherel’s formula). In fact we have seen that if
{z}} satisfies the frame inequality with A = B = 1 and if ||zx|| = 1 for all k, then {x;} is
an orthonormal basis for H.

2. A different way to characterize some of these properties is to think of two operators
associated to a Riesz basis {x}. The first is the analysis operator T: H — [? given by
T(z) = {(z,z1) }x. That T'(x) € I (and further that T is a bounded linear operator) follows
from the frame inequality. The second is the synthesis operator from > — H given by
{ar} — > ag xx. Since the synthesis operator is the adjoint of 7', we will just denote it by
T*.

3. In this language, {z} is a Riesz basis if and only if T" is a bounded linear bijection from H
onto [?. In other words there is a one to one correspondence between sequences of the form
{{x, ) }r and sequences in [?. In other words, every [? sequence gets “hit” by something
in H through the analysis operator. In still other words, this statement is equivalent to (c)
above.

Definition 3 Let H be an infinite-dimensional Hilbert space. An infinite collection {xy}
of vectors in H is (finnitely) linearly independent if every finite subset of {xy} is linearly
independent. It is w-linearly independent if a sequence {ay.} such that >, ap xp converges
in the norm of H to 0 must be identically zero.

Lemma 1 If {z} is w-linearly independent then it is linearly independent. However a
sequence can be finitely linearly independent without being w—linearly independent.

Remark.

If {x)} is an orthonormal basis, then it is w-linearly independent. If {z;} is a Riesz basis,
then it is w-linearly independent. Both of these facts follow from the assertion that an
orthonormal or Riesz basis has a biorthogonal sequence.

Theorem 2 A sequence {xy} in a Hilbert space H is a Riesz basis for H if and only if {xy}
satisfies the frame condition and is w—linearly independent.

C. Frames in Hilbert Spaces.



Definition 4 A sequence {xy} in a Hilbert space H is a frame if there exist numbers A, B >
0 such that for all x € H we have

Allzl* < Yz, za)* < Blla*.
k

The numbers A, B are called the frame bounds. The frame is tight if A = B. The frame is
exact if it ceases to be a frame whenever any single element is deleted from the sequence.

Remarks.

1. From the Plancherel formula we see that every orthonormal basis is a tight exact frame
with A = B = 1. For orthonormal bases, the Plancherel formula is equivalent to the ba-
sis property, which gives a decomposition of the Hilbert space. The weakened form of the
Plancherel formula satisfied by frames also gives a decomposition, although the representa-
tions need not be unique.

2. A frame is a complete set since if z € H satisfies (z,z,) = 0 for all n, then A|z|* <
Sz, z,)?> =0, so x = 0.

3. A tight frame need not be exact and vice versa. For example let {e,, }>°, be an orthonormal
basis for H. Then

(a) {e1,eq,eq,69,€e3,€3,-} is a tight inexact frame with bounds A = B = 2, but is not an
orthonormal basis, although it contains one.

(b) {el, es/2,e3/3, - } is a complete orthogonal sequence, but not a frame.

(c) {61,62/\/5, ea/V2,e3/V3,e3/\V3,e3/V/3, - } is a tight frame with bounds A = B =1

but is not an exact sequence, and no nonredundant subsequence is a frame.

(d) {2e1,ez,€3, -} is an exact frame with bounds A = 1, B = 2 and is not a tight frame.

Theorem 3 Given a sequence {x,} in a Hilbert space H, the following two statements are
equivalent:

(a) {x,} is a frame with bounds A, B.

(b) Sz = > (z,x,)x, is a bounded linear operator with AI < S < BI, called the frame
operator for {x,}.

Corollary 1 (a) S is invertible and B~ < S7! < A71T.
(b) {S~'z,} is a frame with bounds B, A™', called the dual frame of {x,}.

(c) Fvery x € H can be written x = > (x, S 'x,)x, = Y (x,2,)S x,,.



Theorem 4 Given a frame {x,} and given x € H let a,, = (x,S™'x,), sox =Y a,z,. If it
is possible to find other scalars c, such that x = Y c,xy, then Y |ca]? = X an)> + 3 la, —ca|?.

Theorem 5 The removal of a vector from a frame leaves either a frame or an incomplete
set. In particular, if for a given m, (T, S 'z,) # 1 then {Tn}nim is a frame; and if
(T, S ) = 1 then {x, }nsm is not complete in H.

Corollary 2 If {z,} is an exact frame, then {x,} and {S™'z,} are biorthogonal, i.e.,
(T, ST ) = On.-

Theorem 6 A sequence {x,} in a Hilbert space H is an exact frame for H if and only if it
1s a Riesz basis for H.

D. Example: Nonharmonic Fourier Series.

One illustrative way to generate examples of Riesz bases and frames is as “perturbations”
of orthonormal bases. One classic result in this direction is the following

Theorem 7 (Paley-Wiener) Let {ex} be an orthonormal basis for the Hilbert space H and
suppose that {x} is a sequence in H with the property that for some 0 < A < 1,

zk:ak(ek —a)|| < )\(Z \a;ﬁ) 2

k
for every finite sequence {cy}. Then {xy} is a Riesz basis for H.

The proof of this theorem uses the following important result from operator theory.
Lemma 2 A bounded linear operator T on a Hilbert space is invertible whenever || I =T|| < 1.

One application of the theorem of Paley and Wiener is to the problem of nonharmonic
Fourier series. We know that the collection {e*™"}, cz is an orthonormal basis for L?[0, 1].
What are the basis properties of collections of the form {e?™*t}, _, where {),} is a sequence
of real or complex numbers?

The following result follows directly from the above theorem of Paley and Wiener.

Theorem 8 There is an € > 0 such that whenever |\, —n| < e then {e*™*'}, .7 is a Riesz
basis for L*[0,1].

An interesting question is: What is the largest value of € for which the above theorem is
valid? The answer is € = 1/4. This result is known as the Kadec 1/4 theorem. Implicit in
this solution is the statement that the theorem fails if € > 1/4. In fact the following is true.

:|:27ri(n—1/4)t}oo_1

Theorem 9 The collection {e is complete in L?[0,1].

This implies that the collection {e**=t} 7 where \, = n—1/4ifn >0, n+1/4ifn <0
and 0 if n = 0 is not a Riesz basis for L?[0, 1].
In terms of frames of exponentials, the following result is due to Duffin and Schaeffer.

Theorem 10 Suppose there are constants L > 0 and € > 0 such that (1) for alln, |\, —n| <
L, and (2) for all n # m, |A\, — An| > €. Then the collection {e**t}, oz is a frame for
L2[0,7] for all 0 <y < 1.



