
QMF Conditions and the DWT.

A. Quick tutorial on Fourier Analysis of sequences.
We have seen that if f(x) has period 1 and is in L2[0, 1], then we can expand f in its

Fourier series as
f(x) =

∑
n∈Z

f̂(n) e2πinx

where f̂(n) =
∫ 1
0 f(x) e−2πinx dx are the Fourier coefficients of f . Since the collection of

exponentials is an orthonormal basis for L2[0, 1] we have Plancherel’s formula

‖f‖22 =
∫ 1

0
|f(x)|2 dx =

∑
n

|f̂(n)|2.

We can change our perspective and define a Fourier analysis for sequences as follows.

Definition 0.1 Given a sequence {c(n)}n∈Z in `2 we define its frequency representation (or
its Fourier transform), C(γ) (or sometimes ĉ(γ)), a period 1 function in L2[0, 1], by

C(γ) =
∑
n

c(n) e−2πinγ.

We have as with Fourier series and Fourier transforms the inversion formula

c(n) =
∫ 1

0
C(γ) e2πinγ dγ,

and Plancherel’s formula ∑
n

|c(n)|2 =
∫ 1

0
|C(γ)|2 dγ.

We also have the notions of translation and convolution for sequences.

Theorem 0.1 Let c = {c(n)}n∈Z ∈ `2. The shift operator, τ is defined on `2 by (τmc)(n) =
c(n−m). The Fourier transform of τmc is e−2πinγ C(γ).

Theorem 0.2 Given two sequences c = {c(n)}n∈Z and d = {d(n)}n∈Z both in `1, their
convolution c ∗ d is the sequence

(c ∗ d)(n) =
∑
k

c(k) d(n− k) =
∑
k

d(k) c(n− k).

This sequence is also in `1 and its Fourier transform is given by C(γ)D(γ).

B. Motivation: Wavelet Expansions of Discrete Data.
We start with the assumption that we are given a wavelet ψ(x) that comes from a MRA

with scaling function ϕ(x) with scaling filter {h(n)}. Suppose we are given a sequence of
data c0 = {c0(n)}n∈Z. We will make several observations:
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1. That we assume c0 is an infinite sequence makes it no less interesting for practical
applications. Anything we can say for an infinite sequence we can also say of any finite
sequence regardless of its length.

2. In most digital signal processing (DSP) applications, a sequence of discrete data is
assumed to be the samples of some underlying bandlimited function or signal. Hence
in principle the discrete data completely determines the underlying function or signal.
The assumption that the signal is bandlimited is really only for convenience and comes
from the assumption that the discrete data consists of samples.

3. A more natural assumption for our purposes is that the data represent the level zero
scaling coefficients of some underlying function f . In other words, we assume that the
actual signal we are measuring is given by f =

∑
n c0(n)ϕ0,n, so that f ∈ V0. In this

case once again the data completely determine the underlying function but a different
assumption of convenience is made.

4. Under the above assumption, it is useless to try to compute the projections Pjf and
Qjf for j > 0 since Pjf = f and Qjf = 0 for all such j. Therefore the only wavelet
decomposition we can do is to find Pjf and Qjf for j ≤ 0. Below we will see how to
do that.

Lemma 0.1 Since ϕ0,0 =
∑
n h(n)ϕ1,n, it follows that

(a) ϕ0,k =
∑
n

h(n− 2k)ϕ1,n,

(b) ϕj,k =
∑
n

h(n− 2k)ϕj+1,n,

(c) ψj,k =
∑
n

g(n− 2k)ϕj+1,n.

Lemma 0.2 If cj(k) = 〈f, ϕ−j,k〉 and dj(k) = 〈f, ψ−j,k〉, then

(a) cj+1(k) =
∑
n

cj(n)h(n− 2k),

(b) dj+1(k) =
∑
n

cj(n) g(n− 2k),

(c) cj(k) =
∑
n

cj+1(n)h(k − 2n) +
∑
n

dj+1(n) g(k − 2n).

Remark. Note that the wavelet and scaling coefficients of f at all negative scales can be
computed from the initial scale-zero scaling coefficients and the scaling and wavelet filters,
and that this process is completely reversible. Our goal will be to back out the properties
of the scaling and wavelet filters that allow this to hold. This yields a theory of wavelets
completely in the discrete domain.
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Theorem 0.3 Let {Vj} be an MRA with scaling filter h(k) and wavelet filter g(k). Then

(a)
∑
n

h(n) =
√

2 (⇐⇒
∫
ϕ(x) dx 6= 0)

(b)
∑
n

g(n) = 0 (⇐⇒
∫
ψ(x) dx = 0)

(c)
∑
k

h(k)h(k − 2n) =
∑
k

g(k) g(k − 2n) = δ(n) (⇐⇒ 〈ϕ0,0, ϕ0,n〉 = 〈ψ0,0, ψ0,n〉 = δ(n))

(d)
∑
k

g(k)h(k − 2n) = 0 for all n ∈ Z (⇐⇒ 〈ϕ0,0, ψ0,n〉 = 0, all n)

(e)
∑
k

h(m− 2k)h(n− 2k) +
∑
k

g(m− 2k) g(n− 2k) = δ(n−m) (⇐⇒ Pj+1 = Pj +Qj).

C. Approximation and Detail Operators.

Definition 0.2 Given a filter h(k), let g(k) = (−1)k h(1− k). The approximation operator
H and detail operator G corresponding to h(k) are given by

(a) (Hc)(k) =
∑
n

c(n)h(n− 2k),

(b) (Gc)(k) =
∑
n

c(n) g(n− 2k).

Define the approximation adjoint H∗ and detail adjoint G∗ by

(c) (H∗c)(k) =
∑
n

c(n)h(k − 2n),

(d) (G∗c)(k) =
∑
n

c(n) g(k − 2n).

Theorem 0.4 Given h(k), g(k) as above,

(a)
∑
k

h(k)h(k − 2n) =
∑
k

g(k) g(k − 2n) = δ(n)⇐⇒ HH∗ = GG∗ = I,

(b)
∑
k

g(k)h(k − 2n) = 0⇐⇒ HG∗ = GH∗ = 0,

(c)
∑
k

h(m− 2k)h(n− 2k) +
∑
k

g(m− 2k) g(n− 2k) = δ(m− n)⇐⇒ H∗H +G∗G = I.

The operators H and G are transformations on the Hilbert space `2 of square-summable
sequences, and we can talk about how these operators behave in the transform domain, that
is, we can look at the Fourier transforms of Hc and Gc for c ∈ `2.

Definition 0.3 Let c(n) be in `1.
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(a) The downsampling operator ↓ is defined by (↓c)(n) = c(2n).

(b) The upsampling operator ↑ is defined by

(↑c)(n) =

{
c(n/2) if n is even,

0 if n is odd.

Lemma 0.3 Given c(n) in `1,

(a) (↓c)∧(γ) =
1

2

(
ĉ
(
γ

2

)
+ ĉ

(
γ + 1

2

))
.

(b) (↑c)∧(γ) = ĉ(2γ).

Lemma 0.4 (a) Defining h(n) = h(−n) and g(n) = g(−n) (also known as the involution
of h and g), then (Hc)(n) =↓(c ∗ h)(n) and (Gc)(n) =↓(c ∗ g)(n).

(b) Also (H∗c)(n) = (↑c) ∗ h(n) and (G∗c)(n) = (↑c) ∗ g(n).

Lemma 0.5 Given h(k), g(k) = (−1)k h(1− k), m0(γ) = 2−1/2
∑
k h(k) e−2πikγ, and m1(γ) =

2−1/2
∑
k g(k) e−2πikγ. Then for any c(n),

(a) (Hc)∧(γ) =
1√
2

(
ĉ(γ/2)m0(γ/2) + ĉ(γ/2 + 1/2)m0(γ/2 + 1/2)

)
,

(b) (Gc)∧(γ) =
1√
2

(
ĉ(γ/2)m1(γ/2) + ĉ(γ/2 + 1/2)m1(γ/2 + 1/2)

)
,

(c) (H∗c)∧(γ) =
√

2ĉ(2γ)m0(γ), and (G∗c)∧(γ) =
√

2ĉ(2γ)m1(γ).

Lemma 0.6 Given h(k), g(k) as usual. Then m0(γ)m0(γ + 1/2) +m1(γ)m1(γ + 1/2) = 0
which is equivalent to HG∗ = GH∗ = 0.

Theorem 0.5 Given h(k), g(k), m0(γ), m1(γ), and the operators H, G, H∗, and G∗ as
above, the following are equivalent.

(a) |m0(γ)|2 + |m0(γ + 1/2)|2 ≡ 1.

(b) H∗H +G∗G = I.

(c) HH∗ = GG∗ = I.

D. The QMF Conditions.

Definition 0.4 Given h(k), m0(γ) as before, we say h(k) is a QMF (quadrature mirror
filter) if

(a) m0(0) = 1 and
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(b) |m0(γ/2)|2 + |m0(γ/2 + 1/2)|2 ≡ 1.

Theorem 0.6 Suppose that h(k) is a QMF and define g(k) as before. Then:

(a)
∑
n

h(n) =
√

2,

(b)
∑
n

g(n) = 0,

(c)
∑
k

h(k)h(k − 2n) =
∑
k

g(k) g(k − 2n) = δ(n).

(d)
∑
k

g(k)h(k − 2n) = 0 for all n ∈ Z.

(e)
∑
k

h(m− 2k)h(n− 2k) +
∑
k

g(m− 2k) g(n− 2k) = δ(n−m).

E. The Discrete Wavelet Transform (DWT).

1. For infinite signals: Let h(k) be a QMF, g(k) the dual filter, and let H, G, H∗, and
G∗ be as above. Fix J ∈ N. The DWT of a signal c0(n), is the collection of sequences

{dj(k): 1 ≤ j ≤ J ; k ∈ Z} ∪ {cJ(k): k ∈ Z},

where cj+1(n) = (Hcj)(n), and dj+1(n) = (Gcj)(n). The inverse transform is cj(n) =
(H∗cj+1)(n) + (G∗dj+1)(n). If J =∞, then the DWT of c0 is the collection of sequences

{dj(k): j ∈ N; k ∈ Z}.

2. For finite, zero-padded signals: Suppose that c0(n) has length 2N , and that h(n) and
g(n) have length L > 2, with L even. Then

(a) c1 = Hc0 and d1 = Gc0 each have length (2N + L− 2)/2,

(b) cj and dj would have length at least 2N−j + (1− 2−j)(L− 2).

(c) The total length of the DWT for c0 would be at least (2N 2−J + (1 − 2−J)(L − 2)) +∑J
j=1(2

N 2−j + (1 − 2−j)(L − 2)) = 2N + J(L − 2), where J ∈ N indicates the depth
chosen for the DWT.

3. For periodic signals:

Lemma 0.7 Let c(n) have period 2N , h(k) a QMF, Then (Hc)(n) and (Gc)(n) have period
2N−1, and (H∗c)(n) and (G∗c)(n) have period 2N+1.

MATLAB illustration for zero-padded signals.
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>> x=[0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1];

>> dwtmode(’zpd’)

****************************************

** DWT Extension Mode: Zero Padding **

****************************************

>> [h g h1 g1]=wfilters(’db2’);

>> h

h =

-0.1294 0.2241 0.8365 0.4830

>> [c1 d1]=dwt(x,’db2’)

c1 =

-0.1294 0.8966 3.7250 6.5534 9.6407

10.4171 7.5887 4.7603 1.8024

d1 =

-0.4830 -0.0000 -0.0000 -0.0000 0.9659

0.0000 0.0000 0.0000 -0.4830

>> length(x)

ans =

16

>> length([c1 d1])

ans =

18

>> [C L]=wavedec(x,4,’db2’);

>> length(C)

ans =

25

MATLAB illustration for periodic signals:

>> dwtmode(’per’)

*****************************************

** DWT Extension Mode: Periodization **

*****************************************

>> [c1 d1]=dwt(x,’db2’)

c1 =

0.4483 2.3108 5.1392 7.9676

10.8654 9.0029 6.1745 3.3461

d1 =

-0.2588 -0.0000 -0.0000 -0.0000

0.2588 0.0000 0.0000 0.0000

>> length(x)

ans =
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16

>> length([c1 d1])

ans =

16

>> [C L]=wavedec(x,4,’db2’);

>> length(C)

ans =

16
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