
Wavelet Orthonormal Bases for L2(R).

A. Wavelet systems.

Definition 0.1 A wavelet system in L2(R) is a collection of functions of the form

{D2jTkψ}j,k∈Z = {2j/2ψ(2jx− k)}j,k∈Z = {ψj,k}j,k∈Z

where ψ ∈ L2(R) is a fixed function sometimes called the mother wavelet.
A wavelet system that forms an orthonormal basis for L2(R) is called a wavelet orthonor-

mal basis for L2(R).

Remarks. (a) If the mother wavelet ψ(x) is “concentrated” around 0 then ψj,k(x) is concen-
trated around 2−jk. If ψ(x) is essentially supported on an interval of length L, then ψj,k(x)
is essentially supported on an interval of length 2−jL. In fact, if ψ(x) is concentrated on an
interval I, then ψj,k(x) is concentrated on the interval 2−jI + 2−jk.

(b) Since (D2jTkψ)∧(γ) = D2−jMkψ̂(γ) it follows that if ψ̂ is concentrated on the interval I

then ψ̂j,k is concentrated on the interval 2jI.

(c) A wavelet basis then corresponds to a dyadic tiling of the time-frequency plane.

B. Example: The Haar system.

Definition 0.2 For each pair of integers j, k ∈ Z, define the interval Ij,k by

Ij,k = [2−jk, 2−j(k + 1)).

The collection of all such intervals is called the collection of dyadic subintervals of R. We
write Ij,k = I`j,k ∪ Irj,k, where I`j,k and Irj,k are dyadic intervals at scale j + 1, to denote the
left half and right half of the interval Ij,k. In fact, I`j,k = Ij+1,2k and Irj,k = Ij+1,2k+1.

Lemma 0.1 Given j0, k0, j1, k1 ∈ Z, with either j0 6= j1 or k0 6= k1, then either Ij1,k1 and
Ij0,k0 are disjoint or one is contained in the other. In the latter case, the smaller interval is
contained in either the right half or left half of the larger.

Definition 0.3 A dyadic step function is a step function f(x) with the property that for
some j ∈ Z, f(x) is constant on all dyadic intervals Ij,k, k ∈ Z. We say in this case that
f(x) is a scale j dyadic step function.

Remarks. (a) For each j ∈ Z, the collection of all scale j dyadic step functions is a linear
space.

(b) If f(x) is a scale j dyadic step function on an interval I, then f(x) is also a scale j′

dyadic step function on I for any j′ ≥ j.
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Definition 0.4 Let p(x) = χ
[0,1)(x). For each j, k ∈ Z, define

pj,k(x) = 2j/2 p(2jx− k) = D2jTkp(x).

The collection {pj,k(x)}j,k∈Z is referred to as the system of Haar scaling functions. For each
j ∈ Z, the collection {pj,k(x)}k∈Z is referred to as the system of scale j Haar scaling functions.

Let h(x) = χ
[0,1/2)(x)− χ[1/2,1)(x), and for each j, k ∈ Z, define

hj,k(x) = 2j/2 h(2jx− k) = D2jTkh(x).

The collection {hj,k(x)}j,k∈Z is referred to as the Haar system on R. For each j ∈ Z, the
collection {hj,k(x)}k∈Z is referred to as the system of scale j Haar functions.

Remark. (a) For each j, k ∈ Z,

pj,k(x) = 2j/2 χIj,k(x),

hj,k(x) = 2j/2 (χI`
j,k

(x)− χIr
j,k

(x)) = 2j/2 (χIj+1,2k
(x)− χIj+1,2k+1

(x)).

Both pj,k(x) and hj,k(x) are supported on the interval Ij,k and neither one vanishes on that
interval. We associate to each interval Ij,k the pair of functions pj,k(x) and hj,k(x).

(b) For each j, k ∈ Z, pj,k(x) is a scale j dyadic step function (hence also a scale j+1 dyadic
step function), and hj,k(x) is a scale j + 1 dyadic step function.

Theorem 0.1 The Haar system is an orthonormal system on R and for each j ∈ Z, the
scale j Haar scaling functions, form an orthonormal system on R.

Lemma 0.2 (The Splitting Lemma.) Let j ∈ Z, and let gj(x) be a scale j dyadic step
function. Then gj(x) can be written as gj(x) = rj−1(x)+gj−1(x), where rj−1(x) has the form

rj−1(x) =
∑
k

aj−1(k)hj−1,k(x),

for some coefficients {aj−1(k)}k∈Z, and gj−1(x) is a scale j − 1 dyadic step function.
Moreover, gj−1(x) and rj−1(x) are orthogonal.

Theorem 0.2 The Haar system is an orthonormal basis for L2(R).

C. Characterization of orthonormal wavelet bases.

Lemma 0.3 Suppose that a sequence {xn} in a Hilbert space H satisfies

1. for all x ∈ H,
∑
n |〈x, xn〉|2 = ‖x‖2, and

2. ‖xn‖ = 1 for all n.

Then {xn} is an orthonormal basis for H.
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Remarks. (a) Obviously the above theorem characterizes orthonormal bases. In other
words the theorem is an “if and only if” theorem.

(b) Each of the conditions in the theorem is required. For example if we take the system
{(1/
√

2)e2πinx, (1/
√

2)e2πi(n+1/2)x}n∈Z, it is the union of two orthonormal bases and hence
satisfies 1. However, it clearly does not satisfy 2. Such a system is called a tight frame. More
about this later in the semester.

Theorem 0.3 Suppose that ψ ∈ L2(R) satisfies ‖ψ‖2 = 1. Then {ψj,k}j,k∈Z is an orthonor-
mal wavelet basis for L2(R) if and only if

1.
∑
j∈Z
|ψ̂(2jγ)|2 ≡ 1, and

2.
∞∑
j=0

ψ̂(2jγ) ψ̂(2j(γ + k)) = 0 for all odd integers k.

Remark. Condition 1. above says that in order for a wavelet system to be an orthonormal
basis, the dilated Fourier transforms of the mother wavelet must “cover” the frequency
axis. So for example if ψ̂ had very small support, then it could never generate a wavelet
orthonormal basis.

Theorem 0.4 Given ψ ∈ L2(R), the wavelet system {ψj,k}j,k∈Z is an orthonormal system
in L2(R) if and only if

1.
∑
k∈Z
|ψ̂(γ + k)|2 ≡ 1, and

2.
∑
j∈Z

ψ̂(2j(γ + k)) ψ̂(γ + k) = 0 for all j ≥ 1.

Remark. Combining Condition 1. above with Condition 1. of the previous theorem implies
that a function generating an orthoormal wavelet basis must “tile” the frequency axis both
by dilation and by translation.

D. Example: The Bandlimited Wavelet.

Theorem 0.5 Let ψ ∈ L2(R) be defined by ψ̂ = χ
[−1,−1/2]+χ

[1/2,1]. Then {ψj,k} is a wavelet
orthonormal basis for L2(R).

Remarks. (a) Here we can give a very clear interpretation of the meaning of the wavelet
coefficients {〈f, ψj,k〉}k∈Z as the Fourier coefficients of f̂ cut-off to the interval [−2j,−2j−1]∪
[2j−1, 2j], so that those coefficients all together capture the features of f at “scale” 2−j.
Coefficients at different values of k identify the intensity of that range of frequencies at
“time” 2−jk.
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(b) Returning to the idea of the wavelet basis as representing a tiling of the time-frequency
plane, we can see that the elements of the Haar system have perfect time-localization but
very poor frequency localization. The bandlimited wavelet system has perfect frequency
localization and poor time localization. Can we find a wavelet orthonormal basis that does
better?

E. Example: The Meyer wavelet.

The idea here is to find a mother wavelet similar to but smoother than the Bandlimited
wavelet. The specific construction follows certain steps.

1. Define the functions s(x) and c(x) with the following properties:

(a) s(x) = 0 and c(x) = 1 if x ≤ −1/6,

(b) s(x) = 1 and c(x) = 0 if x ≥ 1/6,

(b) 0 ≤ s(x), c(x) ≤ 1 for all x, and

(b) s(x)2 + c(x)2 = 1 for all x.

2. Define ψ(x) by means of its Fourier transform by

ψ̂(γ) = −e−πiγ



0 if |γ| ≤ 1/3 or |γ| ≥ 4/3,
s(γ − 1/2) if γ ∈ [1/3, 2/3],
c(γ/2− 1/2) if γ ∈ [2/3, 4/3],
s(γ/2 + 1/2) if γ ∈ [−4/3,−2/3],
c(γ + 1/2) if γ ∈ [−2/3,−1/3].

3. Then verify that

1.
∑
j∈Z
|ψ̂(2jγ)|2 ≡ 1, and

2.
∞∑
j=0

ψ̂(2jγ) ψ̂(2j(γ + k)) = 0 for all odd integers k.

Remarks. (a) The functions s(x) and c(x) can be made as smooth as desired (even up to
C∞). The smoother these functions, the more rapidly decaying will be the wavelet ψ(x).
Since ψ̂ is compactly supported, its frequency localization is perfect, and a rapidly decaying
ψ(x) gives good time localization.

(b) The seemingly miraculous cancellations that verify condition 2. above can be understood
much more easily using the notion of a Multiresolution Analysis (MRA). In fact, the Haar
basis and the bandlimited wavelet basis can all be understood in this way.
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