
Review of Fourier Analysis.

A. The Fourier Transform.

Definition 0.1 The normed linear space L1(R) consists of all functions f , Lebesgue mea-
surable on R with the property that the norm

‖f‖1 =
∫ ∞
−∞
|f(x)| dx

is finite.

Remarks. (a) L1(R) is a linear space under the usual addition and scalar multiplication of
functions.

(b) We saw before that L2[0, 1] ⊆ L1[0, 1] which follows from the inequality ‖f‖1 ≤ ‖f‖2

(where the norms are on the spaces Lr[0, 1], r = 1, 2). However this is false if [0, 1] is replaced
by R.

(c) The spaces Cc(R) and C∞c (R) are both dense in L1(R).

Definition 0.2 The Fourier transform of f ∈ L1(R), denoted f̂(γ), is given by,

f̂(γ) =
∫ ∞
−∞

f(x) e−2πiγx dx.

Remarks. (a) Note a superficial resemblance to the definition of the Fourier coefficients of
a function on [0, 1], namely

f̂(n) =
∫ 1

0
f(x) e−2πinx dx.

We will explore this relationship later.

(b) We assume that f ∈ L1(R) in order to guarantee that the integral converges. This is
only technical as the integral can be interpreted for a variety of function spaces.

Definition 0.3 The Fourier inversion formula is the following. If f̂(γ) is the Fourier trans-
form of f(x) then,

f(x) =
∫ ∞
−∞

f̂(γ) e2πiγx dγ.

Remarks. (a) Fourier inversion is not always valid. Indeed a major focus of a rigorous
course in Fourier analysis is to determine conditions under which the inversion formula holds
pointwise and in other senses.

(b) We will give the precise theorem later but will typically use Fourier inversion without
regard for the precise nature of its validity.

Proposition 0.1 Suppose that f ∈ L1(R). Then f̂ ∈ C0(R), that is, f̂ (a) is continuous
on the real line and (b) converges to zero at infinity.
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Remarks. (a) Note that f ∈ L1(R) does not necessarily imply that f̂ ∈ L1. In fact, an easy
counterexample to that is the function f(x) = χ

[−1/2,1/2](x). (See Exercise 3.4 in Walnut)

(b) It is possible to manufacture functions f ∈ L1(R) such that f̂(γ) converges to zero as
slowly as desired.

Theorem 0.1 If both f and f̂ ∈ L1(R), then the Fourier inversion formula holds at each
point x. Note that any such f for which this holds pointwise must be also in C0(R)).

B. Invariance Properties of the Fourier Transform.

(1) Translation, Dilation, and Modulation.

Definition 0.4 Given a > 0, the dilation operator, Da is given by

Daf(x) = a1/2 f(ax).

Given b ∈ R, the translation operator, Tb is given by

Tbf(x) = f(x− b).

Given c ∈ R, the modulation operator, Mc is given by

Mcf(x) = e2πicx f(x).

Theorem 0.2 Let f ∈ L1(R).

(a) For every a > 0, D̂af(γ) = D1/af̂(γ).

(b) For every b ∈ R, T̂bf(γ) = M−bf̂(γ).

(c) For every c ∈ R, M̂cf(γ) = Tcf̂(γ).

Theorem 0.3 (Translation and Dilation) For every f, g ∈ L2(R), and for every a > 0,
b ∈ R,
(c) 〈f,Dag〉 = 〈Da−1f, g〉.
(d) 〈f, Tbg〉 = 〈T−bf, g〉.
(e) 〈f,DaTbg〉 = 〈T−bDa−1f, g〉.
(f) 〈Daf,Dag〉 = 〈f, g〉.
(g) 〈Tbf, Tbg〉 = 〈f, g〉.

Theorem 0.4 (Translation and Modulation) For every f, g ∈ L2(R), and for every b, c ∈
R,
(a) TbMcf(x) = e−2πibcMcTbf(x).
(b) 〈f,Mcg〉 = 〈E−cf, g〉.
(c) 〈f, TbMcg〉 = e2πibc 〈T−bM−cf, g〉.

(2) Differentiation.
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Theorem 0.5 (Differentiation Theorem) If f, x f(x) ∈ L1(R), then f̂ ∈ C1(R), and

x̂f(γ) =
−1

2πi

df̂

dγ
(γ).

Corollary 0.1 If f, xN f(x) ∈ L1(R) for some N ∈ N, then f̂ ∈ CN(R), and for 0 ≤ j ≤
N ,

x̂jf(γ) =
(−1

2πi

)j dj f̂
dγj

(γ).

(3) Convolution and Involution.

Definition 0.5 Given functions f(x) and g(x), the convolution of f(x) and g(x), denoted
h(x) = f ∗ g(x), is defined by

f ∗ g(x) =
∫ ∞
−∞

f(t) g(x− t) dt.

Remarks. (a) The convolution f ∗ g(x) can be interpreted as a “moving weighted average”
of f(x), where the “weighting” is determined by the function g(x).

(b) Convolution is commutative, i.e., f ∗ g(x) = g ∗ f(x).

(c) Convolution is a smoothing operation. In general, f ∗ g(x) will be at least as smooth as
the smoothest of f and g, and if both f and g are smooth, it will pick up the smoothness of
both.

(d) The convolution of f and g will in general decay at infinity only as fast as the slowest-
decaying of f or g.

Theorem 0.6 (The Convolution Theorem) If f, g ∈ L1(R), then

̂f ∗ g(γ) = f̂(γ) ĝ(γ).

Definition 0.6 Given f(x), the involution of f , denoted f ∗(x), is defined by f ∗(x) = f(−x).

Theorem 0.7
f̂ ∗(γ) = f̂(γ).

C. Basic Properties of the Fourier Transform.

(1) Smoothness versus Decay.
A fundamental principle of use in interpreting many results about the Fourier transform
is the following: Smooth functions have Fourier transforms that decay rapidly to zero at
infinity, and functions that decay rapidly to zero at infinity have smooth Fourier transforms.
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Theorem 0.8 (Differentiation Theorem) If f, x f(x) ∈ L1(R), then f̂ ∈ C1(R), and

x̂f(γ) =
−1

2πi

df̂

dγ
(γ).

Corollary 0.2 If f, xN f(x) ∈ L1(R) for some N ∈ N, then f̂ ∈ CN(R), and for 0 ≤ j ≤
N ,

x̂jf(γ) =
(−1

2πi

)j dj f̂
dγj

(γ).

Corollary 0.3 If f, f̂ , γN f̂(γ) ∈ L1(R), then f ∈ CN(R), and for 0 ≤ j ≤ N ,

f (j)(x) =
∫ ∞
−∞

(2πiγ)j f̂(γ) e2πiγx dγ.

Theorem 0.9 Suppose that f ∈ L1(R), and that for some N ∈ N,
(1) f̂ ∈ CN(R),
(2) f̂ , f̂ (N) ∈ L1(R)
(3) For 0 ≤ j ≤ N , lim

|γ|→∞
f̂ (j)(γ) = 0. Then

lim
|x|→∞

xN f(x) = 0.

(2) Plancherel’s, Parseval’s, and Poisson’s Summation formula.

Theorem 0.10 (Plancherel’s Formula) If f ∈ L1(R) ∩ L2(R), then f̂ ∈ L2(R) and∫ ∞
−∞
|f̂(γ)|2 dγ =

∫ ∞
−∞
|f(x)|2 dx.

Theorem 0.11 (Parseval’s Formula) If f, g ∈ L1(R) ∩ L2(R), then∫ ∞
−∞

f̂(γ) ĝ(γ) dγ =
∫ ∞
−∞

f(x) g(x) dx.

Theorem 0.12 (Poisson’s Summation Formula) If f(x) is sufficiently smooth and has suf-
ficiently rapid decay, then ∑

n

f(x+ n) =
∑
m

f̂(m) e2πimx.

Corollary 0.4 If f is such that the PSF holds, and if δ > 0 and α ∈ R, then

∞∑
n=−∞

f
(
x+ n

δ

)
e−2πinα/δ = δ

∞∑
m=−∞

f̂(δm+ α) e2πix(δm+α)/δ.

Definition 0.7 A function f ∈ L2(R), is bandlimited if there is a number Ω > 0 such that
f̂(γ) is supported in the interval [−Ω/2,Ω/2]. In this case, the function f(x) is said to have
bandlimit Ω > 0.
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Theorem 0.13 (The Shannon Sampling Theorem) If f(x) is bandlimited with bandlimit Ω,
then f(x) can be written as

f(x) =
∑
n

f(n/Ω)
sin(πΩ(x− n/Ω))

πΩ(x− n/Ω)
,

in L2 and L∞ on R.

D. The Uncertainty Principle and the Time-Frequency Plane.

Suppose that f ∈ L2(R) and that ‖f‖2 = 1. Then we can consider the function |f(x)|2 to
be a probability distribution with expected value

x̄ =
∫ ∞
−∞

x |f(x)|2 dx

and standard deviation

∆fx =
(∫ ∞
−∞

(x− x̄)2|f(x)|2 dx
)1/2

.

By Plancherel’s formula, f̂ ∈ L2(R) also satisfies ‖f̂‖2 = 1 and we write

γ̄ =
∫ ∞
−∞

γ |f̂(γ)|2 dγ

and

∆fγ =
(∫ ∞
−∞

(γ − γ̄)2|f̂(γ)|2 dγ
)1/2

for the expected value and standard deviation of the probability distribution |f̂(γ)|2.

Theorem 0.14 Classical Uncertainty Principle. If f ∈ L2(R) then

∆fx ·∆fγ ≥
1

4π

and this inequality is minimized when f(x) = e2πiγ̄(x−x̄) e−π(x−x̄)2/c = Tx̄Mγ̄(e
−π(·)2/c)(x) for

some c > 0.

Remark. (a) Roughly speaking we can say that ∆fx measures the “essential support” of
f(x) in the sense that the function f(x) is thought of as “mostly concentrated” in an interval
of length 2∆fx. Similarly, ∆fγ measures the essential support of f̂(γ). Hence the uncertainty
principle says that a function and its Fourier transform cannot both be well-concentrated
around their respective means.

(b) This inequality is formulated as: A realizable signal occupies a region of area at least
one in the time-frequency plane. A more precise formulation of this principle occurs in the
following inequality of Donoho and Stark.
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Definition 0.8 A function f ∈ L2(R) is ε-concentrated on a set T if

(∫
T c
|f(x)|2 dx

)1/2

< ε ‖f‖2.

Theorem 0.15 Suppose that f ∈ L2(R) is εT -concentrated on the set T ⊆ R and f̂ is
εΩ-concentrated on the set Ω ⊆ R. Then

|T | |Ω| ≥ (1− εT − εΩ)2.
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