
Local Trigonometric Bases.

The goal is to develop an orthonormal basis for L2(R) whose elements are localized to a tiling
of the time-frequency plane corresponding to an arbitrary partition of the time-axis. This is
to be contrasted to wavelet-packet bases that are localized to a tiling of the time-frequency
plane corresponding to an arbitrary dyadic partition of the frequency-axis.

A. Trigonometric Bases on Intervals.

Theorem 1 Let I = [a, a + l]. Then the following collections are orthonormal bases for
L2(I).

(a)
{√

2

l
cos

2k + 1

2l
π(x− a)

}∞

k=0
.

(b)
{√

2

l
sin

2k + 1

2l
π(x− a)

}∞

k=0
.

(c)
{√

2

l
sin

k

l
π(x− a)

}∞

k=1
.

(d)
{√

2

l
cos

k

l
π(x− a)

}∞

k=0
.

The proof of this theorem relies on the following lemma.

Lemma 1 Let I = [c− b, c + b]. Then the collection

{
1√
2b

,
1√
b

cos
k

b
π(x− c),

1√
b

sin
k

b
π(x− c)

}∞

k=1

is an orthonormal basis for L2(I).

The idea of the proof of the Theorem is to start with a function defined on [a, a+l], extend
it to be odd or even about a, resulting in a function defined on [a− l, a+ l], then extend that
function to be odd or even about a + l and a − l (same symmetry about each point), and
consider the portion of this function defined on [a− 2l, a + 2l]. Expand this function in the
basis given in the Lemma. The symmetries imply that most of the coefficients will vanish
except those attached to the elements of the collections given in the Theorem. Each such
collection corresponds to a choice of symmetries about a and a + l (respectively) as follows.

(a)
{√

2

l
cos

2k + 1

2l
π(x− a)

}∞

k=0
(even/odd).

(b)
{√

2

l
sin

2k + 1

2l
π(x− a)

}∞

k=0
(odd/even).
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(c)
{√

2

l
sin

k

l
π(x− a)

}∞

k=1
(odd/odd).

(d)
{√

2

l
cos

k

l
π(x− a)

}∞

k=0
(even/even).

B. Smooth bell functions over intervals.

Recall that in the construction of the Meyer wavelet, we encountered smooth functions sε(x)
and cε(x) (for any given ε > 0 with the property that

(1) sε(x) = cε(−x),

(2) s2
ε(x) + c2

ε(x) = 1,

(3) 0 ≤ sε(x), cε(x) ≤ 1,

(4) sε(x) = 0 for x ≤ −ε and 1 for x ≥ ε, and

(5) cε(x) = 0 for x ≥ ε and 1 for x ≤ −ε.

Definition 1 Given I = [α, β] and ε, ε′ > 0 such that α + ε ≤ β − ε′, define the function
bI(x) by bI(x) = sε(x− α) cε′(x− β). bI(x) is referred to as a smooth bell function over I.

Definition 2 Given adjacent intervals I = [α, β] and J = [β, γ], the smooth bell functions
bI and bJ are compatible if bI(x) = sε(x− α) cε′(x− β) and bJ(x) = sε′(x− α) cε′′(x− β).

C. Smooth Projections.

Definition 3 Given I, ε, ε′ as above, define the operator PI on L2(R) by

PIf(x) = bI(x)[bI(x)f(x)± bI(2α− x)f(2α− x)± bI(2β − x)f(2β − x)].

Remarks.

1. Note that PIf(x) is supported in the interval [α− ε, β + ε′].

2. ± means that we can make either choice in each place where this occurs. This means
that there are four flavors of PI , (+, +), (+,−), (−, +), (−,−). The first ± is called
the polarity of PI at α and the second ± is called the polarity of PI at β.

3. f(2α− x) is the reflection of f(x) about the line x = α, similarly for f(2β − x).

4. PIf(x) is obtained by (a) cutting off f(x) by multiplication by bI(x), (b) extending the
result to be even or odd about α (corresponding to the first ±, + = even, − = odd),
then extending that result to be even or odd about β (corresponding to the first ±),
(c) cutting off the result by multiplication by bI(x) again.
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5. We write PIf(x) = bI(x) S(x) where S(x) is even/odd about α and even/odd about β
depending on the polarity of PI at those points.

Theorem 2 The operators PI satisfy the following properties.

(a) PI is an orthogonal projector. This means that P 2
I = PI and P ∗

I = PI .

(b) If bI and bJ are compatible bells on the intervals I = α, β] and J = [β, γ] and if PI and
PJ have opposite polarities at β then PI + PJ = PI∪J .

(c) In the case of (b) above, PI PJ = 0.

Theorem 3 Choose a sequence {αj}j∈Z strictly increasing and going to infinity in both
directions and numbers εj satisfying αj + εj ≤ αj+1 − εj+1. Note that this ensures that there
exist compatible smooth bell functions over each interval Ij. Now choose smooth projections
Pj onto Ij = [αj, αj+1] with opposite polarities at the common endpoints. Then the projectors
{Pj} split L2(R) into mutually orthogonal subspaces, Hj = Pj(L

2(R)).

D. Orthogonal Expansions of Hj = Pj(L
2(R)).

Recall that the orthonormal bases for intervals given in the first Theorem correspond to the
expansions in an ordinary sine and cosine basis of the even or odd extensions of functions
about the endpoints of the interval in their various combinations.

Now fix an interval I = [α, β] and numbers ε and ε′ as before, and a polarity (i.e. a choice
of + or −) for a projection PI . Finally let {ek(x)} denote the sine or cosine basis from the
first Theorem with the same polarity. Then the following holds.

Theorem 4 If I is given as above and if bI is a smooth bell function over I, then the
collection {bI(x) ek(x)}k is an orthonormal basis for the subspace PI(L

2(R)).

For the proof of this theorem we must verify three things.

(a) {bI ek} is an orthonormal system in L2(R).

(b) For all f ∈ L2, PIf(x) =
∑

k ck bI(x) ek(x) for some coefficients {ck} with
∑

k |ck|2 < ∞.

(c) bI ek ∈ PI(L
2(R)) for all k.

For part (c) the following Lemma is sufficient and also will be useful later on.

Lemma 2 Suppose that g ∈ L2(R) is even or odd about α and β in some combination, and
that the smooth projector PI has the same polarity at α and β. Then PI(bI g) = bI g.

E. Local Trigonometric Bases for L2(R).
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Theorem 5 Choose a sequence {αj}j∈Z strictly increasing and going to infinity in both
directions and numbers εj satisfying αj + εj ≤ αj+1 − εj+1. Now choose smooth projections
Pj onto Ij = [αj, αj+1] with opposite polarities at the common endpoints. Let θj,k(x) =
bIj

(x) ej,k(x) where {ej,k(x)}k is the sine or cosine basis on L2(Ij) with the same polarity as
Pj at each endpoint. Then {θj,k} is an orthonormal basis for L2(R).

The proof of this theorem requires that we verify orthogonality and completeness. Or-
thogonality for θj,k corresponding to nonadjacent intervals follows since their supports are
disjoint. Orthogonality for functions corresponding to the same interval follows from the
previous Theorem. Orthogonality for functions corresponding to adjacent intervals follows
from the previous Lemma and a property of smooth projections.

For example, choosing the polarity (−, +) for all of the Pj gives the basis

θj,k(x) =

√
2

|Ij| bIj
(x) sin

2k + 1

2|Ij| π(x− αj), j ∈ Z, k ≥ 0.

Choosing the polarity (+,−) for each Pj gives the basis

θj,k(x) =

√
2

|Ij| bIj
(x) cos

2k + 1

2|Ij| π(x− αj), j ∈ Z, k ≥ 0.

Note that the polarities of the Pj can be mixed and matched as desired as long as the
appropriate basis is chosen on each Ij.
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