
Multiresolution Analysis.

A. Definition and Examples.

Definition 0.1 A multiresolution analysis on R is a sequence of subspaces {Vj}j∈Z ⊆ L2(R)
satisfying:

(a) For all j ∈ Z, Vj ⊆ Vj+1.

(b) span{Vj}j∈Z = L2(R). That is, the set ∪j∈ZVj is dense in L2(R).

(c) ∩j∈Z Vj = {0}.
(d) A function f(x) ∈ V0 if and only if D2jf(x) ∈ Vj.

(e) There exists a function ϕ(x), L2 on R, called the scaling function such that the collec-
tion {Tnϕ(x)} is an orthonormal basis for V0.

Remarks. (a) An MRA is completely determined by the scaling function ϕ(x) in the
following way. Given ϕ with the property that {Tnϕ(x)} is an orthonormal system, define
the subspace V0 by V0 = span{Tnϕ(x)}, and the subspaces Vj by Vj = D2jV0, that is, f ∈ Vj

if and only if D2−jf ∈ V0. Then verify that (a)–(e) hold for this sequence of subspaces.

(b) For example, if we let ϕ(x) = χ
[0,1](x), then the MRA so generated is called the Haar

MRA and leads to the construction of the Haar wavelet.

(c) If we let ϕ(x) be defined by ϕ̂(γ) = χ
[−1/2,1/2](γ), then the MRA so generated is called

the bandlimited MRA and leads to the construction of the Bandlimited wavelet.

(d) If we let ϕ(x) be defined by

ϕ̂(γ) =





0 if |γ| ≥ 4/3
1 if |γ| ≤ 1/3

c(γ − 1/2) if x ∈ (1/3, 2/3)
s(γ + 1/2) if x ∈ (−2/3,−1/3)

where s(γ) and c(γ) are as defined in Lecture 3, then the MRA so generated is called the
Meyer MRA and leads to the construction of the Meyer wavelet.

Lemma 0.1 Given ϕ ∈ L2(R), the system {Tnϕ(x)} is an orthonormal system if and only
if ∑

n∈Z

|ϕ̂(γ + n)|2 ≡ 1.

Corollary 0.1 Suppose that the system {Tnϕ(x)} is an orthonormal system. Then a func-
tion f ∈ span{Tnϕ(x)} if and only if there is a sequence {cn} ∈ l2 such that f =

∑
n cn Tnϕ

or equivalently if there is a period-1 function C ∈ L2[0, 1] such that f̂(γ) = C(γ) ϕ̂(γ).
(Exercise 1. Verify this.)
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Lemma 0.2 {D2jTkϕ}k∈Z is an orthonormal basis for Vj. (Exercise 2. Verify this.)

Lemma 0.3 There exists {h(k)} ∈ `2 such that ϕ(x) =
∑

k h(k) 21/2ϕ(2x − k). This equa-
tion is referred to as the two-scale dilation equation and the sequence {h(k)} is referred
to as the scaling sequence or scaling filter. We may write ϕ̂(γ) = m0(γ/2) ϕ̂(γ/2), where
m0(γ) = 1√

2

∑
k h(k) e−2πikγ is called the auxiliary function. (Exercise 3. Verify the last

statement in this Lemma.)

Lemma 0.4 If {Tnϕ(x)} is an orthonormal system and if ϕ(x) satisfies the two-scale dila-
tion equation with scaling filter {h(k)}. Then the auxiliary function m0(γ) satisfies

|m0(γ)|2 + |m0(γ + 1/2)|2 ≡ 1.

Remark. Our goal in this lecture is to prove the following theorem, which will be restated
in more detail below: If {Vj} is an MRA, then there exists a function ψ ∈ L2(R) such that
{ψj,k} is an orthonormal wavelet basis for L2(R).

B. Projectors and Subspaces.
Recall that if H is a Hilbert space and M a closed subspace of H, then given x ∈ H, we

can decompose x uniquely as x = xM + xM⊥ where xM ∈ M and xM⊥ ∈ M⊥. The operator
PM that maps x to xM is called the orthogonal projector onto M . The basic result here is
the following.

Theorem 0.1 An operator P on a Hilbert space H is the orthogonal projector onto Ran(P )
if and only if P 2 = P and P is self-adjoint, that is, 〈Px, y〉 = 〈x, Py〉 for all x, y ∈ H. Also,
if P is an orthogonal projector then for all x ∈ H, ‖Px‖ ≤ ‖x‖.
Definition 0.2 For each j ∈ Z, define the approximation operator Pj to be the orthogonal
projector onto Vj and the detail operator Qj by Qj = Pj+1 − Pj. Let Wj be the orthogonal
complement of Vj in Vj+1. In other words, Wj consists of all f ∈ Vj+1 such that 〈f, g〉 = 0
for all g ∈ Vj.

Lemma 0.5 Pjf =
∑

k〈f, ϕj,k〉ϕj,k.

Lemma 0.6 For all f ∈ L2(R), Pjf → f and P−jf → 0 as j →∞.

Lemma 0.7 Qj is the orthogonal projector onto Wj.

C. Recipe for constructing wavelet bases.

Theorem 0.2 Let {Vj} be an MRA with scaling function ϕ(x) and scaling filter h(k).
Define the wavelet filter g(k) by g(k) = (−1)k h(1− k) and the wavelet ψ(x) by ψ(x) =∑

k g(k) 21/2 ϕ(2x− k). Then {ψj,k(x)}j,k∈Z is a wavelet orthonormal basis on R.
Alternatively, given any J ∈ Z,

{ϕJ,k(x)}k∈Z ∪ {ψj,k(x)}j,k∈Z

is an orthonormal basis on R.
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Remarks. (a) Taking the Fourier transform gives that ψ̂(γ) = m1(γ/2) ϕ̂(γ/2), where
m1(γ) = e−2πi(γ+1/2) m0(γ + 1/2). (Exercise 4. Verify this statement.)

(b) The alternate form for the wavelet basis is based on the observation that in a traditional
wavelet basis, the “low frequency” components of a function f , that is, that portion of
f̂(γ) for γ near zero, are the coefficients {〈f, ψj,k〉}j<J, k∈Z where J is any fixed integer.
These components can be equivalently and more conveniently expressed in the coefficients
{〈f, ϕJ,k〉}k∈Z.

The proof of the theorem is accomplished by proving the following lemmas.

Lemma 0.8 Suppose that ψ ∈ L2 has the property that {Tnψ}n∈Z is an orthonormal basis
for W0. Then {ψj,k}j,k∈Z is an orthonormal basis for L2(R).

Claim 1: {D2jTnψ}n∈Z is an orthonormal basis for Wj. (Exercise 5. Verify this claim.)

Claim 2: span{D2jTnψ} is dense in L2(R).

Lemma 0.9 Suppose that ψ(x) is given by the recipe in the Theorem. Then {Tnψ}n∈Z is
an orthonormal basis for W0.

Claim 1: With ψ so defined, the collection {Tnψ}n∈Z is an orthonormal set. (Exercise 6.
Verify this. Hint: Use Lemma 0.1.)

Claim 2: W0 = span{Tnψ}n∈Z.

Examples. (a) The Haar wavelet. In this case, we can compute the scaling and wavelet
filters directly.

ϕ(x) = ϕ(2x) + ϕ(2x− 1) =
1√
2
ϕ1,0(x) +

1√
2
ϕ1,1(x).

Therefore,

h(n) =

{
1√
2

if n = 0, 1,

0 if n 6= 0, 1,

Therefore,

g(n) =





1√
2

if n = 0,

− 1√
2

if n = 1,

0 if n 6= 0, 1.

and

ψ(x) =
1√
2
ϕ1,0(x)− 1√

2
ϕ1,1(x) = ϕ(2x)− ϕ(2x− 1) = χ

[0,1/2)(x)− χ
[1/2,1)(x).

(b) The Bandlimited wavelet. Here it is more convenient to work on the transform side.
Recall that ϕ̂(γ) = χ

[−1/2,1/2)(γ). Since ϕ̂(γ/2) = χ
[−1,1)(γ), it follows that

ϕ̂(γ) = m0(γ/2) ϕ̂(γ/2),

where m0(γ) is the period 1 extension of χ
[−1/4,1/4)(γ).
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Thus, m1(γ) is the period 1 extension of the function

e−2πi(γ+1/2)
(
χ

[−1/2,−1/4)(γ) + χ
[1/4,1/2)(γ)

)

so that

ψ̂(γ) = m1(γ/2) ϕ̂(γ/2) = −e−πiγ
(
χ

[−1,−1/2)(γ) + χ
[1/2,1)(γ)

)
.

By taking the inverse Fourier transform,

ψ(x) =
sin(2πx)− cos(πx)

π(x− 1/2)
=

sin π(x− 1/2)

π(x− 1/2)
(1− 2 sin πx).

(c) The Meyer wavelet. Recall that

ϕ̂(γ) =





0 if |γ| ≥ 2/3,
1 if |γ| ≤ 1/3,

s(γ + 1/2) if γ ∈ (1/3, 2/3),
c(γ − 1/2) if γ ∈ (−2/3,−1/3),

Therefore, ϕ̂(γ) = m0(γ/2) ϕ̂(γ/2), where m0(γ) is the period 1 extension of the function

ϕ̂(2γ) χ
[−1/2,1/2](γ).

ψ(x) is defined by
ψ̂(γ) = −e−πiγ m0(γ/2 + 1/2) ϕ̂(γ/2)

and

ψ̂(γ) =





0 if |γ| ≤ 1/3 or |γ| ≥ 4/3,
s(γ − 1/2) if γ ∈ (1/3, 2/3],

c(γ/2− 1/2) if γ ∈ (2/3, 4/3),
s(γ/2 + 1/2) if γ ∈ (−4/3,−2/3),
c(γ + 1/2) if γ ∈ [−2/3,−1/3).
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