The Fourier transform.

Definition. The Fourier transform of a function $f \in L^1(\mathbf{R})$, is also a function on \mathbf{R} , denoted $\hat{f}(\gamma)$ defined by

$$\widehat{f}(\gamma) = \int_{\mathbf{R}} f(x) e^{-2\pi i \gamma x} dx.$$

Theorem. If f(x) is L^1 on \mathbf{R} , then $\hat{f}(\gamma)$ is uniformly continuous on \mathbf{R} .

Proof:

Theorem. (Riemann-Lebesgue Lemma) If f(x) is L^1 on \mathbf{R} , then

$$\lim_{|\gamma|\to\infty}\widehat{f}(\gamma)=0.$$

Theorem. (Fourier Inversion) If $f \in L^1(\mathbf{R})$, and if $\hat{f} \in L^1(\mathbf{R})$, then for each $x \in \mathbf{R}$,

$$\int_{\mathbf{R}} \widehat{f}(\gamma) e^{2\pi i \gamma x} d\gamma = f(x).$$

Convolution.

Definition. Given functions f(x) and g(x), the *convolution* of f(x) and g(x), denoted h(x) = f * g(x), is defined by

$$f * g(x) = \int_{\mathbf{R}} f(t) g(x-t) dt.$$

Remarks. (a) The convolution f * g(x) can be interpreted as a "moving weighted average" of f(x), where the "weighting" is determined by the function g(x).

(b) Convolution is *commutative*, i.e., f*g(x) = g*f(x).

(c) Convolution is a smoothing operation. In general, f * g(x) will be at least as smooth as the smoothest of f and g, and if both f and g are smooth, it will pick up the smoothness of both.

(d) The convolution of f and g will in general decay at infinity only as fast as the slowest-decaying of f or g.

Theorem. If $f \in L^{\infty}(\mathbf{R})$ and $g \in L^{1}(\mathbf{R})$, or if $f, g \in L^{2}(\mathbf{R})$, then $f * g \in C^{0}(\mathbf{R})$.

Theorem. (a) If $f, g \in L^1(\mathbf{R})$, then $f * g \in L^1(\mathbf{R})$, and

 $||f * g||_1 \le ||f||_1 ||g||_1.$

(b) If $f \in L^1(\mathbf{R})$, and $g \in L^2(\mathbf{R})$, then $f * g \in L^2(\mathbf{R})$, and

 $||f * g||_2 \le ||f||_1 \, ||g||_2.$

(c) If $f, g \in L^2(\mathbf{R})$, then $f * g \in L^{\infty}(\mathbf{R})$, and $\|f * g\|_{\infty} \le \|f\|_2 \|g\|_2.$

(d) If $f \in L^{\infty}(\mathbf{R})$, and $g \in L^{1}(\mathbf{R})$, then $f * g \in L^{\infty}(\mathbf{R})$, and

$$||f * g||_{\infty} \le ||f||_{\infty} ||g||_{1}.$$

Theorem. (The Convolution Theorem) If $f, g \in L^1(\mathbf{R})$, then

$$\widehat{f * g}(\gamma) = \widehat{f}(\gamma) \,\widehat{g}(\gamma).$$

Plancherel's and Parseval's formula.

Theorem. (Plancherel's Formula) If $f \in L^1(\mathbf{R}) \cap L^2(\mathbf{R})$, then $\hat{f} \in L^2(\mathbf{R})$ and

$$\int_{\mathbf{R}} |\widehat{f}(\gamma)|^2 d\gamma = \int_{\mathbf{R}} |f(x)|^2 dx.$$

Theorem. (Parseval's Formula) If $f, g \in L^1(\mathbf{R}) \cap L^2(\mathbf{R})$, then

$$\int_{\mathbf{R}} \widehat{f}(\gamma) \,\overline{\widehat{g}(\gamma)} \, d\gamma = \int_{\mathbf{R}} f(x) \,\overline{g(x)} \, dx.$$

Smoothness and Decay.

Remark. A fundamental principle of use in interpreting many results about the Fourier transform is the following: *Smooth functions have Fourier transforms that decay rapidly to zero at infinity, and functions that decay rapidly to zero at infinity have smooth Fourier transforms.* **Theorem.** (Differentiation Theorem) If $f, x f(x) \in L^1(\mathbf{R})$, then $\hat{f} \in C^1(\mathbf{R})$, and

$$\widehat{xf}(\gamma) = \frac{-1}{2\pi i} \frac{d\widehat{f}}{d\gamma}(\gamma).$$

Corollary. If $f, x^N f(x) \in L^1(\mathbf{R})$ for some $N \in \mathbf{N}$, then $\hat{f} \in C^N(\mathbf{R})$, and for $0 \leq j \leq N$,

$$\widehat{x^j f}(\gamma) = \left(\frac{-1}{2\pi i}\right)^j \frac{d^j \widehat{f}}{d\gamma^j}(\gamma).$$

Corollary. If $f, \hat{f}, \gamma^N \hat{f}(\gamma) \in L^1(\mathbf{R})$, then $f \in C^N(\mathbf{R})$, and for $0 \leq j \leq N$,

$$f^{(j)}(x) = \int_{\mathbf{R}} (2\pi i\gamma)^j \,\widehat{f}(\gamma) \, e^{2\pi i\gamma x} \, d\gamma.$$

Theorem. Suppose that $f \in L^1(\mathbf{R})$, and that for some $N \in \mathbf{N}$,

(1)
$$\hat{f} \in C^{N}(\mathbf{R})$$
,
(2) $\hat{f}, \hat{f}^{(N)} \in L^{1}(\mathbf{R})$
(3) For $0 \leq j \leq N$, $\lim_{|\gamma| \to \infty} \hat{f}^{(j)}(\gamma) = 0$. Then
 $\lim_{|x| \to \infty} x^{N} f(x) = 0$.

5

Dilation, Translation, and Modulation.

Recall the following definition, to which we add one more.

Definition Given a > 0, the *dilation operator*, D_a is given by

$$D_a f(x) = a^{1/2} f(ax).$$

Given $b \in \mathbf{R}$, the *translation operator*, T_b is given by

$$T_b f(x) = f(x-b).$$

Given $c \in \mathbf{R}$, the modulation operator, E_c is given by

$$E_c f(x) = e^{2\pi i c x} f(x).$$

Theorem. Let $f \in L^1(\mathbf{R})$. (a) For every a > 0, $\widehat{D_a f}(\gamma) = D_{1/a} \widehat{f}(\gamma)$. (b) For every $b \in \mathbf{R}$, $\widehat{T_b f}(\gamma) = E_{-b} \widehat{f}(\gamma)$. (c) For every $c \in \mathbf{R}$, $\widehat{E_c f}(\gamma) = T_c \widehat{f}(\gamma)$. **Theorem.** ((Further) Properties of Dilation and Translation) For every $f, g \in L^2(\mathbb{R})$, and for every a > 0, $b \in \mathbb{R}$, (c) $\langle f, D_a g \rangle = \langle D_{a^{-1}} f, g \rangle$. (d) $\langle f, T_b g \rangle = \langle T_{-b} f, g \rangle$. (e) $\langle f, D_a T_b g \rangle = \langle T_{-b} D_{a^{-1}} f, g \rangle$. (f) $\langle D_a f, D_a g \rangle = \langle f, g \rangle$. (g) $\langle T_b f, T_b g \rangle = \langle f, g \rangle$.

Theorem. (Properties of Translation and Modulation) For every $f, g \in L^2(\mathbf{R})$, and for every $b, c \in \mathbf{R}$, (a) $T_b E_c f(x) = e^{-2\pi i b c} E_c T_b f(x)$. (b) $\langle f, E_c g \rangle = \langle E_{-c} f, g \rangle$.

(c)
$$\langle f, T_b E_c g \rangle = e^{2\pi i b c} \langle T_{-b} E_{-c} f, g \rangle$$

Bandlimited Functions and the Sampling Formula

Definition. A function $f \in L^2(\mathbf{R})$, is *bandlimited* if there is a number $\Omega > 0$ such that $\widehat{f}(\gamma)$ is supported in the interval $[-\Omega/2, \Omega/2]$. In this case, the function f(x) is said to have *bandlimit* $\Omega > 0$.

Theorem. (The Shannon Sampling Theorem) If f(x) is bandlimited with bandlimit Ω , then f(x) can be written as

$$f(x) = \sum_{n} f(n/\Omega) \frac{\sin(\pi \Omega (x - n/\Omega))}{\pi \Omega (x - n/\Omega)},$$

in L^2 and L^∞ on **R**.