The Fourier transform.

Definition. The Fourier transform of a func-
tion f € L1(R), is also a function on R, de-
noted f(v) defined by

fon = [ £@)e ™" da.

Theorem. If f(z) is L1 on R, then f(v) is
uniformly continuous on R.

Proof:

Theorem. (Riemann-Lebesgue Lemma) If f(x)
is L1 on R, then

lim f(v) = 0.
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Theorem. (Fourier Inversion) If f € LY (R),
and if f € L1(R), then for each z € R,
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| F ey = f(@).



Convolution.

Definition. Given functions f(x) and g(x), the
convolution of f(x) and g(xz), denoted h(x) =
f*g(x), is defined by

fro@) = [ F®)g—t)at

Remarks. (a) The convolution fxg(x) can be
interpreted as a “moving weighted average” of
f(x), where the “weighting” is determined by
the function g(x).

(b) Convolution is commutative, i.e., fxg(xz) =

g* f(x).

(c) Convolution is a smoothing operation. In
general, f *g(x) will be at least as smooth as
the smoothest of f and g, and if both f and g
are smooth, it will pick up the smoothness of
both.

(d) The convolution of f and ¢ will in general
decay at infinity only as fast as the slowest-
decaying of f or g.



Theorem. If f € L®(R) and g € L1(R), or if
f, g € L2(R), then fxg e CO(R).

Theorem. (a) If f,g € L1(R), then fxg €
L1(R), and

1= gllr < [IFll1 llgll1-
(b) If f € L1(R), and g € L?(R), then fxg €
L2(R), and

1f *gll2 < [Ifll1 llgll2-

(c) If f, g € L2(R), then fxg € L°(R), and
[ * glloo < [[fll2[lg]l2-

(d) If f € L°(R), and g € L1(R), then fxg €

L*°(R), and

1f * glloo < [[flloo llgll1-

Theorem. (The Convolution Theorem) If f, g €
L1(R), then

Frg(v) = F(1)g(v).



Plancherel’'s and Parseval's formula.

Theorem. (Plancherel's Formula) If f € L1(R)N
L2(R), then f € L?(R) and
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Theorem. (Parseval’'s Formula) If f, g € L1 (R)N
L2(R), then

LIy = [ f@) 9@ de

Smoothness and Decay.

Remark. A fundamental principle of use in in-
terpreting many results about the Fourier trans-
form is the following: Smooth functions have
Fourier transforms that decay rapidly to zero
at infinity, and functions that decay rapidly
to zero at infinity have smooth Fourier trans-
forms.



Theorem. (Differentiation Theorem) If f, = f(x) €
LY(R), then f e C(R), and

—1df

rf(vy) = 2—m a(’Y)

Corollary. If f, 2V f(z) € LY(R) for some N €
N, then f e CN(R), and for 0 < j < N,
— —1..df
J = J . .
I f(7y) (2m‘) i (7)
Corollary. If f, f, vN f(v) € L1(R), then f €
CN(R), and for 0 < j < N,

FD (@) = [ (@riv)] f(3) 2™ ay

Theorem. Suppose that f € L1(R), and that
for some N € N,

(1) fe CN(R),

(2) f, f™) e LY(R)

(3) For0<j <N, lim fU)(y)=0. Then
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im zV f(z) = 0.
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Dilation, Translation, and Modulation.

Recall the following definition, to which we add
one more.

Definition Given a > 0, the dilation operator,
D, is given by

Dof(x) = al/zf(ax).

Given b € R, the translation operator, Ty is
given by

Tyf(z) = f(z —b).

Given ¢ € R, the modulation operator, E. is
given by

Ecf(z) = 2™ f(x).
Theorem. Let f € Ll(R)
(a) For every a > 0, Daf(’y) = Dl/af(fy)

(b) For every b € R, be(y) = bf(’y)
(c) For every ¢ € R, Ecf(v) = Tef (7).



Theorem. ((Further) Properties of Dilation
and Translation) For every f, g € L?(R), and
for every a >0, b e R,

() (f,Dag) = (D,-1f,9).

(d) {f,Tog) = (T_pf, 9)-

(e) (f, DaTpg) = (T_pD,-1f,9).

(f) (Daf, Dag) = (f,9)-

(9) (Thf, Tpg) = ([, 9)-

Theorem. (Properties of Translation and Mod-
ulation) For every f, g € L?(R), and for every
b, c € R,

(@) TyEcf(z) = e 2™ BT} f(2).

(b) (f, Ecg) = (E—cf, g).

(©) (f, TyEeg) = e*™(T_4E_cf, g).



Bandlimited Functions and the Sampling For-
mula

Definition. A function f € L2(R), is bandlim-
ited if there is a number €2 > 0 such that f(v) is
supported in the interval [-2/2,€2/2]. In this
case, the function f(x) is said to have ban-
dlimit €2 > 0.

Theorem. (The Shannon Sampling Theorem)

If f(x) is bandlimited with bandlimit €2, then

f(x) can be written as

sin(wQ(x —n/2))
mQ(x —n/Q)

flz) =3 f(n/2)

in L2 and L™ on R.



