Fourier series.

Definition. A function f(x) defined on **R** has period p > 0 if f(x + p) = f(x) for all $x \in \mathbf{R}$. Such a function is said to be (p) periodic.

Given a > 0, the collection of functions

$$\{e^{2\pi inx/a}\}_{n\in\mathbb{Z}} = \{e_{n/a}(x)\}_{n\in\mathbb{Z}}$$

is called the (period a) trigonometric system. Here $e_{\lambda}(x) = e^{2\pi i \lambda x}$.

Theorem. The period a trigonometric system is an orthogonal system on [0, a] (and in fact on any interval I of length a), that is,

$$\langle e_{n/a}, e_{m/a} \rangle = \int_0^a e^{2\pi i n x/a} e^{-2\pi i m x/a} dx$$
$$= \begin{cases} 0 & \text{if } n \neq m, \\ a & \text{if } n = m. \end{cases}$$

The fundamental problem in Fourier series is the following: Given a function f(x) with period a > 0, we want to write

$$f(x) = \sum_{n \in \mathbf{Z}} c(n) e^{2\pi i n x/a}$$

This leads to three questions:

- (a) (**Coefficients**) What are the coefficients c(n)?
- (b) (**Convergence**) In what sense does the series converge?
- (c) (**Completeness or Uniqueness**) Does the series on the right converge to f(x), or to some other function?

Definition. Given a function f(x) with period a, the *Fourier coefficients* of f(x) are defined for each $n \in \mathbb{Z}$ by

$$c(n) = \frac{1}{a} \langle f, e_{n/a} \rangle = \frac{1}{a} \int_0^a f(x) e^{-2\pi i n x/a} dx.$$

The answers to questions (b) and (c) occupied mathematicians for many decades. Here are a couple of famous theorems.

Theorem. (Dirichlet) Suppose that f(x) has period a > 0 and is piecewise differentiable on **R**. Then the sequence of partial sums of the Fourier series of f(x), $\{S_N(x)\}_{N \in \mathbb{N}}$, where

$$S_N(x) = \sum_{n=-N}^{N} c(n) e^{2\pi i n x/a},$$

converges pointwise to the function $\tilde{f}(x)$, where

$$\widetilde{f}(x) = \frac{1}{2} \left[\lim_{t \to x^+} f(t) + \lim_{t \to x^-} f(t) \right]$$

Theorem. (Fejér) Let f(x) be a function with period a > 0 continuous on \mathbf{R} , and define for each $n \in \mathbf{N}$ the function $\sigma_N(x)$ by

$$\sigma_N(x) = \frac{1}{N} \sum_{k=0}^{N-1} S_k(x).$$

Then $\sigma_N \to f$ in L^{∞} on \mathbf{R} .

Generalized Fourier Series.

Definition. Recall that a collection of functions $\{g_n(x)\}_{n \in \mathbb{N}}$ on I is an *orthogonal system* (on I) provided that (a) $\langle g_n, g_m \rangle = 0$ if $n \neq m$, and (b) $\langle g_n, g_n \rangle > 0$, and an *orthonormal system* on I if in addition (b') $\langle g_n, g_n \rangle = 1$.

Definition. Given a function $f \in L^2(I)$, and an orthonormal system $\{g_n(x)\}$ on I, the *(generalized)* Fourier coefficients, $\{c(n)\}$ of f(x) with respect to $\{g_n(x)\}$ are defined by

$$c(n) = \int_{I} f(x) \,\overline{g(x)} \, dx = \langle f, g_n \rangle.$$

We want to write $f(x) = \sum_{n \in \mathbb{N}} \langle f, g_n \rangle g_n(x)$. The questions of convergence and completences remain. **Theorem.** (Bessel's Inequality) Let $f \in L^2(I)$, and let $\{g_n(x)\}$ be an orthonormal system on I. Then

$$\sum_{n \in \mathbf{N}} |\langle f, g_n \rangle|^2 \le ||f||_2^2.$$

Lemma. Let $\{g_n(x)\}$ be an orthonormal system on I. Then for every $f \in L^2(I)$, and every $N \in \mathbf{N}$,

$$||f - \sum_{n=1}^{N} \langle f, g_n \rangle g_n ||_2^2 = ||f||_2^2 - \sum_{n=1}^{N} |\langle f, g_n \rangle|^2.$$

Lemma. Let $\{g_n(x)\}$ be an orthonormal system on I. Then for every $f \in L^2(I)$, and every finite sequence of numbers $\{a(n)\}_{n=1}^N$,

$$\|f - \sum_{n=1}^{N} a(n) g_n\|_2^2 = \|f - \sum_{n=1}^{N} \langle f, g_n \rangle g_n\|_2^2 + \sum_{n=1}^{N} |a(n) - \langle f, g_n \rangle|^2.$$

Definition. Given a collection of functions $\{g_n\} \subseteq L^2(I)$, the span of $\{g_n\}$, denoted span $\{g_n\}$, is the collection of all finite linear combinations of the elements of $\{g_n\}$. In other words, $f \in \text{span}\{g_n\}$ if and only if $f(x) = \sum_{n=1}^{N} a(n) g_n(x)$ for some finite sequence $\{a(n)\}_{n=1}^{N}$. Note that N is always finite but may be arbitrarily large.

Remark. The definition of span involves only finite sums. In general an infinite series of the form $\sum_{n \in \mathbb{N}} a(n) g_n(x)$ will not converge in any sense.

Definition. The L^2 closure of span $\{g_n\}$, denoted $\overline{\text{span}}\{g_n\}$ is defined as follows. A function $f(x) \in \overline{\text{span}}\{g_n\}$ if there is a sequence $\{f_n\} \subseteq \overline{\text{span}}\{g_n\}$ such that $f_n \to f$. This is different from saying that $f = \sum_{n=1}^N a(n) g_n$ for some coefficients $\{a(n)\} g_n$.

Theorem. Let $\{g_n(x)\}$ be an ONS on *I*. Then $f \in \overline{\text{span}}\{g_n\}$ if and only if

$$f(x) = \sum_{n \in \mathbf{N}} \langle f, g_n \rangle g_n(x),$$

in L^2 on I.

Definition. Let $\{g_n(x)\}$ be an orthonormal system on I. Then $\{g_n\}$ is *complete* on I provided that every function $f \in L^2(I)$, is in $\overline{\text{span}}\{g_n\}$. A complete orthonormal system is called an *orthonormal basis*.

Theorem. Let $\{g_n(x)\}$ be an orthonormal system on *I*. Then the following are equivalent.

(a) $\{g_n\}$ is complete on I. (b) For every $f \in L^2(I)$,

$$f(x) = \sum_{n \in \mathbf{N}} \langle f, g_n \rangle g_n(x)$$

in L^2 on I.

(c) Every function $f \in C_c^0(I)$, is in $\overline{\text{span}}\{g_n(x)\}$. (d) For every function $f \in C_c^0(I)$,

$$||f||_2^2 = \int_I |f(x)|^2 dx = \sum_{n \in \mathbb{N}} |\langle f, g_n \rangle|^2.$$

Theorem. The trigonometric system $\{e_{n/a}(x)\}_{n \in \mathbb{Z}}$ is complete on [0, 1].