
Functions and Convergence.

Definition. A piecewise continuous function
f(x) defined on an interval I is bounded (or
L∞) on I if there is a number M > 0 such that
|f(x)| ≤ M for all x ∈ I. The L∞-norm of a
function f(x) is defined by

‖f‖∞ = sup{|f(x)|:x ∈ I}.
Definition. A piecewise continuous function
f(x) defined on an interval I is integrable (or
of class L1 or simply L1) on I if the integral

∫

I
|f(x)| dx < ∞.

The L1-norm of a function f(x) is defined by

‖f‖1 =
∫

I
|f(x)| dx.

Theorem. Let f(x) be L1 on R, and let ε > 0
be given. Then there exists a number R such
that if g(x) = f(x) 1[−R,R](x) then

∫ ∞
−∞

|f(x)− g(x)| dx = ‖f − g‖1 < ε.
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Definition. A piecewise continuous function

f(x) defined on an interval I is square-integrable

(or of class L2 or simply L2) on I if the integral
∫

I
|f(x)|2 dx

is finite. The L2-norm of a function f(x) is

defined by

‖f‖2 = (
∫

I
|f(x)|2 dx)1/2.

Theorem. (Cauchy-Schwarz Inequality) Let

f(x) and g(x) be L2 on the interval I. Then

|
∫

I
f(x) g(x) dx| ≤ ‖f‖2 ‖g‖2.

Theorem. (Minkowski’s Inequality) Let f(x)

and g(x) be L2 on the interval I. Then

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.

Theorem. Let f(x) be L2 on R, and let ε > 0

be given. Then there exists a number R such

that if g(x) = f(x) 1[−R,R](x), then
∫ ∞
−∞

|f(x)− g(x)|2 dx = ‖f − g‖22 < ε.
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Definition. Given n ∈ N, we say that a func-
tion f(x) defined on an interval I is Cn on I
if it is n-times continuously differentiable on I.
C0 on I means that f(x) is continuous on I.
f(x) is C∞ on I if it is Cn on I for every n ∈ N.

We say that f(x) is Cn
c on I if it is Cn on I and

compactly supported, C0
c on I if it is C0 on I

and compactly supported, and C∞c on I if it is
C∞ on I and compactly supported.

Theorem. Suppose that I is a finite interval.
Then
(a) L∞(I) ⊆ L1(I)
(b) L1(I) 6⊆ L∞(I)
(c) L∞(I) ⊆ L2(I)
(d) L2(I) 6⊆ L∞(I)
(e) L2(I) ⊆ L1(I)
(f) L1(I) 6⊆ L2(I)

Suppose that I is an arbitrary interval. Then
(a) L∞(I) 6⊆ L1(I)
(b) L∞(I) 6⊆ L2(I)
(c) L2(I) 6⊆ L1(I)
(d) L1(I) 6⊆ L2(I)
(e) L∞(I) ∩ L1(I) ⊆ L2(I)
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Convergence of Sequences and Series of Func-

tions.

Definition. The sequence {fn(x)}n∈N on I

converges pointwise to a function f(x) if for

each x0 ∈ I, the numerical sequence {fn(x0)}n∈N

converges to f(x0). We write fn(x) → f(x)

pointwise on I, as n →∞. The series
∑∞

n=1 fn(x) =

f(x) pointwise on an interval I if for each x0 ∈
I,

∑∞
n=1 fn(x0) = f(x0).

Definition. The sequence {fn(x)}n∈N con-

verges in L∞ (or uniformly) on I to f(x) if

lim
n→∞ sup

x∈I
|fn(x)− f(x)| = 0

or limn→∞ ‖fn− f‖∞. The series
∑∞

n=1 fn(x) =

f(x) uniformly on I if the sequence of partial

sums sN(x) =
∑N

n=1 fn(x) converges in L∞ to

f(x) on I.
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Definition. The sequence {fn(x)}n∈N con-

verges in L1(I) to the function f(x) if

lim
n→∞

∫

I
|fn(x)− f(x)| dx = 0

or limn→∞ ‖fn−f‖1 = 0. The series
∑∞

n=1 fn(x) =

f(x) in L1 on I if the sequence of partial sums

sN(x) =
∑N

n=1 fn(x) converges in L1 to f(x).

Definition. The sequence {fn(x)}n∈N con-

verges in L2(I) to the function f(x) if

lim
n→∞

∫

I
|fn(x)− f(x)|2 dx = 0

or limn→∞ ‖fn−f‖2 = 0. The series
∑∞

n=1 fn(x) =

f(x) in L2 on I if the sequence of partial sums

sN(x) =
∑N

n=1 fn(x) converges in L2 to f(x).
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Theorem. Suppose that I is a finite interval.

Then

(a) Pointwise convergence 6⇒ L∞, L1, or L2

convergence

(b) L∞ convergence ⇒ pointwise, L1, and L2

convergence

(c) Pointwise, L1, or L2 convergence 6⇒ L∞
convergence

(d) L1 convergence 6⇒ pointwise, L2 or L∞
convergence

(e) L2 convergence ⇒ L1 convergence

(f) L2 convergence 6⇒ pointwise or L∞ conver-

gence

Suppose that I is an arbitrary interval. Then

(a) L∞ convergence ⇒ pointwise convergence

(b) L∞ convergence 6⇒ L1 or L2 convergence

(c) L2 convergence 6⇒ L1 convergence
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