Functions and Convergence.

Definition. A piecewise continuous function
f(x) defined on an interval I is bounded (or
L°°) on [ if there is a number M > 0 such that
f(x)] < M for all x € I. The L°-norm of a
function f(x) is defined by

[flloo = sup{|f(z)|: = € I}.

Definition. A piecewise continuous function
f(x) defined on an interval I is integrable (or
of class L1 or simply L1) on I if the integral

/I|f(af;)|dx < o0.

The L1-norm of a function f(z) is defined by

£l = [ 1f(@)]da.

Theorem. Let f(z) be L1 on R, and let ¢ > 0
be given. Then there exists a number R such

that if g(z) = f(x) 1[—R,R]($) then

| 1@ —g@lde = |If =gl <«



Definition. A piecewise continuous function
f(x) defined on an interval I is square-integrable
(or of class L2 or simply L?) on I if the integral

[ 15@)P da

is finite. The L2-norm of a function f(x) is
defined by

1fll2 = ( /[ F(2) |2 da) 112,

Theorem. (Cauchy-Schwarz Inequality) Let
f(x) and g(z) be L? on the interval I. Then

|/ #@) 9() dal < [1£l2 gl

Theorem. (Minkowski's Inequality) Let f(x)
and g(z) be L? on the interval I. Then

1f +gll2 < [[f]l2 + [lgll2.

Theorem. Let f(z) be L2 on R, and let ¢ > 0
be given. Then there exists a number R such

that if g(x) = f(x) 1[—R,R](5’7)' then

[ 1@ = 9@ de = |If = gli3 < <



Definition. Given n € N, we say that a func-
tion f(xz) defined on an interval I is C™ on I
if it is n-times continuously differentiable on I.
C9 on I means that f(z) is continuous on I.
f(x)is C*® on I ifitis C™ on I for every n € N.

We say that f(x) is C* on I ifitis C™ on I and
compactly supported, Cg on I ifitis CO on I
and compactly supported, and Cg° on I if it is
C° on I and compactly supported.

Theorem. Suppose that [ is a finite interval.
T hen

(@) L>=(I) C L1 (1)

(b) LY(I) € L>°(1)

(c) L*°(I) C L?(1)

(d) L2(I) € L°°(1)

(e) L2(I) C Li(I)

(f) LY(I) ¢ L?(1)

Suppose that [ is an arbitrary interval. Then
(@) L>®(I) g Li(I)

(b) L>(I) € L3(1)

(c) L2(I) € L1(1)

(d) L1(I) g L2(1)

(e) Le°(I) N Li(1) C L2(1)



Convergence of Sequences and Series of Func-
tions.

Definition. The sequence {fn(x)},en ONn I
converges pointwise to a function f(x) if for
each zg € I, the numerical sequence { fn(xg) }eN
converges to f(xzg). We write frp(x) — f(x)
pointwise on I, asn — oco. Theseries }-0° ;1 fn(x) =
f(x) pointwise on an interval I if for each zg €

I, 350 1 fa(zo) = f(x0).

Definition. The sequence {fn(z)},eNny CON-
verges in L°° (or uniformly) on I to f(x) if

nli_>moo sup |fn(x) — f(x)| =0
xel

or limMp—oo || fn— flloo. The series 300 1 fn(x) =
f(x) uniformly on I if the sequence of partial
sums sy(z) = SN fu(z) converges in L™ to
f(x) on I.



Definition. The sequence {fn(z)},eNny CON-
verges in L1(I) to the function f(z) if
im_ [ 1fa(2) = f(2)] dz = 0

n—aoo

or limp—co || fn—fll1 = 0. The series }_>°_; fn(z) =
f(z) in LY on I if the sequence of partial sums
sy(x) =N fa(x) converges in L to f(x).

Definition. The sequence {fn(z)},eny cON-
verges in L2(I) to the function f(z) if
im_ [ 1fa(2) = J(2)2 dz = 0

n—aoo

or limp—co || fn—fll2 = 0. The series 3> ; fu(z) =
f(z) in L? on I if the sequence of partial sums
sy(x) = XN fa(x) converges in L? to f(x).



Theorem. Suppose that I is a finite interval.
Then

(a) Pointwise convergence # L, L1, or L2
convergence

(b) L convergence = pointwise, L, and L2
convergence

(c) Pointwise, L1, or L? convergence #% L
convergence

(d) L1 convergence # pointwise, L2 or L
convergence

(e) L? convergence = L1 convergence

(f) L? convergence # pointwise or L™ conver-
gence

Suppose that [ is an arbitrary interval. Then

(a) L°° convergence = pointwise convergence
(b) L convergence % L1 or L2 convergence
(c) L? convergence % L1 convergence



