Vanishing Moments.

Relation to Smoothness.

Theorem. Suppose that {v; p(x)};kez 1S an
orthogonal system on R and that v(x) and
Y(y) are both L1 on R. Then [g () dz = 0.

Theorem. Let ¢(x) be such that forsome N ¢
N, both zNy(z) and AN T1y(y) are in L1(R).
If {¢; ()} ez IS an orthogonal system on R,
then [r 2™y (x)dx =0 for 0 < m < N.



Relation to approximation of smooth func-
tions.

Theorem. Given N € N, assume that the
function f € CN(R), and that f(V) € L°(R).
Assume that the function ¥ (x) has compact
support, that [gz™ ¢ (z)dx = 0, for 0 < m <
N —1 and that Jg [¢;x(z)|?de =1 for all j, k €
Z. Then there is a constant C > 0 depending
only on N and f(x) such that for every j, k € Z,

(5 ¥ 5] < C2—IN o—j/2

Reproduction of polynomials.

Theorem. Let p(x) be a compactly supported
scaling function associated with an MRA, and
let y(x) be the wavelet. If ¢(x) has N van-
ishing moments, then for each integer 0 < k <
N —1, there are coefficients {qj ,, } ,ez Such that

> Qn ez +mn)= .



Equivalent conditions for vanishing moments.

Theorem. Let p(x) be a compactly supported
scaling function associated with an MRA with
finite scaling filter h(n). Let ¢ (x) be the cor-
responding wavelet. Then for each N € N, the
following are equivalent.

(a) /kaw(x)deO for 0 <k <N —1.

(b) m$(1/2) =0, for 0 <k < N —1.

(c) mo(vy) can be factored as
0

1 — 271y
AL 0]

for some period 1 trigonometric polynomial
L(7).

mo(7y) = (

(d) Y h(n) (-1)"n* =0for 0< k<N —1.
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The Daubechies Polynomials.

(1) We want to construct a trig polynomial
mo(y) = % S h(k) e~ 2™k satisfying

1+ 6—2772'7

mo(7y) = ( 5 W L().

and satisfying the QMF conditions.

(2)

1_|_€—27m"y
mo(NI° = |————F" |£()I?

cos? () L().

(3) Since L(~) is a real-valued trig polynomial
with real coefficients, we arrive at

L(y) = P(sin®(77))

for some polynomial P.



(4) This polynomial P must satisfy

1=00 -V Pl +yY P -vy)
with P(y) > 0 for all 0 <y < 1.

(5) We arrive at finally the definition

N-1
S A P
k=0

For example,

Po(y) 1,

Pi(y) = 1+ 2y,

P(y) = 1+ 3y+ 6y,

P5(y) 1 + 4y + 10y? + 20y°.



Spectral Factorization.

We make the following definitions:

(@) Pon_1(y) = (1 — )Y Py_1(»)

(b) Pon_1(2) =Pon-1(1/2 = (z+271)/4)

(€) Pan_o(z) = 22N 1Pon_1(2) = S 2, 2™



Some examples.

(d) N=1

Po(y)
P1(y)
Pi(z)

P> ()

(b)N = 2

P1(y)
P3(y)
P3(z)

Ps(2)

= 1,

= P1(1/2-(z+2"1)/4)

— _1 —1_|_1_lz

- 4Z 214:{ 1
. _ = -, =2
= zPq1(2) = 4—|—2z il
1+ 2y,

(1—9)?(1+2y),
P3(1/2 — (z+271)/4)

1

3—2(—,2_3 +92 14116492 — z3),
2> P3(2)

1

3—2(—1 —|—9z2 -+ 16 23 4+ 9% — z6).



(c)N =3

P>(y) = 1+ 3y+ 642,
Ps(y) = (1 —1)> 1+ 3y+ 6y2),
Ps(z) = Ps(1/2— (z+2"1)/4)

1
= 5(3 » 2 25,34 1502" 1

4256 + 150 z — 25 23 + 32°),
Pio(z) = 2°Ps(2)
1
= 53(3 — 2522 4+ 1502% 4+ 256 2°
+1502° — 2528 4+ 3210,



(d) N=4

P3(y) 1 + 4y + 10y? + 20y°>,
Pr(y) = (1—3)* (1 + 4y + 10y + 2053),
P(2) P7(1/2 — (z 4+ 271)/4)

1

= ——(-5z"44927> 245,73
20060 07 149z ?

+1225 21 + 2048 + 12252
24523 4492° —527),
P14(z) = 2"P7(2)

1 2 4 6
= ——(—-5+4+49 — 245 + 1225
4096( c c ®

+2048 2" + 122528
245210 4 19,12 _5.1%)



Theorem. For each N € N, Poy_1(z) satis-

fies:
ON-1
(a) Poy_1(2) = > am=z™ for some real-
m=—2N+1

valued coefficients an,.

(b) Pony_1(2) + Pony_1(—2) = 1 for all z € C,
z = 0.

(C) P2N—1(Z) > 0 for |Z| = 1.

(d) Pony_1(2) = PQN_]_(Z_1> for all z € C, z #
0.

(e) am =a_m, for —2N +1<m <2N — 1.

(f) am = 0 if m is even and m # 0, and aqg =
1/2.
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Remark. The zeros of P4n_»(2) fall into three
categories.

(1) The zero at —1 which must have multiplic-
ity 2N. Note also that always Pay_»(1) = 1.

(2) The real zeros not equal to —1. These
come in pairs, (zo,zal). Since zg # +1, one of
the pair must have absolute value less than 1
and the other absolute value greater than 1.

Define Zr by Zr = {20 € R:Pan_o(20) =
0, |zg| < 1}.

(3) The nonreal zeros. These zeros come
in clusters of four, namely (zo,zal,%,%—l).
Only one of these zeros can lie within the unit
circle and in the upper half—plane.

Define Zg by Zc = {20 € C:Pan_o(20) =
0, |z0] < 1, S(zg) > 0}.



Theorem. Let N € N. Then there exists a
polynomial Boyn_1(z) of degree 2N — 1 with
real coefficients such that

Pan_2(2) = [Ban-1(2)|*.

Moreover, BQN—l(Z) = (Z + 1)NCN_1(Z) for
some degree N — 1 polynomial Cpn_1(z) with
real coefficients.

Proof:

Bon-1(2) = a2 (z4+ 1)V
x [I 120172 (2 = 20)
20€EZR

x T 12017 (z = 20) (= — z0).

20€ZC
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Examples.

(a) With N = 2,
Ps(2) = 3% (—1 4 922 + 1623 4+ 92% — 2°).
We factor
5 _ 1 4, 2
Pg(2) 1— 2 (z+1)"(—2+42-1)
S GHD G- (2-VE) - 2+ V3),

T herefore,

Bs(2)= 41@ G+ 1)2@2-V3) Y2 (- (2-V3))
1+8\@ 4+ 1)2 (2 — (2 —V3))

1+8ﬁ23+3+8ﬁ22+3—8ﬁ2+1—8@
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(b) With N = 3,

Pio(2) =

We factor

Pio(z) =

1
53(3 2522 4+ 7524 4+ 2562°
+75 0 _ 25,8 + 3 zlo).

1 6
=15 (z+1)

(32% — 1823 4+ 3822 — 182 + 3)
3 6 _
512(z+1) (z —a)(z —@)

(z—a DGE-ah,

where a ~ .2873 + .15291: and

Bg(z) =

V3

|a|164/2

(z4+ 1% (z—a)(z-a)
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