
Vanishing Moments.

Relation to Smoothness.

Theorem. Suppose that {ψj,k(x)}j,k∈Z is an

orthogonal system on R and that ψ(x) and

ψ̂(γ) are both L1 on R. Then
∫
R ψ(x) dx = 0.

Theorem. Let ψ(x) be such that for some N ∈
N, both xNψ(x) and γN+1ψ̂(γ) are in L1(R).

If {ψj,k(x)}j,k∈Z is an orthogonal system on R,

then
∫
R xm ψ(x) dx = 0 for 0 ≤ m ≤ N.
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Relation to approximation of smooth func-

tions.

Theorem. Given N ∈ N, assume that the

function f ∈ CN(R), and that f(N) ∈ L∞(R).

Assume that the function ψ(x) has compact

support, that
∫
R xm ψ(x) dx = 0, for 0 ≤ m ≤

N −1 and that
∫
R |ψj,k(x)|2 dx = 1 for all j, k ∈

Z. Then there is a constant C > 0 depending

only on N and f(x) such that for every j, k ∈ Z,

|〈f, ψj,k〉| ≤ C2−jN 2−j/2.

Reproduction of polynomials.

Theorem. Let ϕ(x) be a compactly supported

scaling function associated with an MRA, and

let ψ(x) be the wavelet. If ψ(x) has N van-

ishing moments, then for each integer 0 ≤ k ≤
N−1, there are coefficients {qk,n}n∈Z such that

∑
n

qk,n ϕ(x + n) = xk.
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Equivalent conditions for vanishing moments.

Theorem. Let ϕ(x) be a compactly supported
scaling function associated with an MRA with
finite scaling filter h(n). Let ψ(x) be the cor-
responding wavelet. Then for each N ∈ N, the
following are equivalent.

(a)
∫

R
xk ψ(x) dx = 0 for 0 ≤ k ≤ N − 1.

(b) m
(k)
0 (1/2) = 0, for 0 ≤ k ≤ N − 1.

(c) m0(γ) can be factored as

m0(γ) = (
1 + e−2πiγ

2
)N L(γ),

for some period 1 trigonometric polynomial
L(γ).

(d)
∑
n

h(n) (−1)n nk = 0 for 0 ≤ k ≤ N − 1.
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The Daubechies Polynomials.

(1) We want to construct a trig polynomial

m0(γ) = 1√
2

∑
k h(k) e−2πikγ satisfying

m0(γ) = (
1 + e−2πiγ

2
)N L(γ).

and satisfying the QMF conditions.

(2)

|m0(γ)|2 = |1 + e−2πiγ

2
|2N |L(γ)|2

= cos2N(πγ)L(γ).

(3) Since L(γ) is a real-valued trig polynomial

with real coefficients, we arrive at

L(γ) = P (sin2(πγ))

for some polynomial P .
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(4) This polynomial P must satisfy

1 = (1− y)N P (y) + yN P (1− y)

with P (y) ≥ 0 for all 0 ≤ y ≤ 1.

(5) We arrive at finally the definition

PN−1(y) =
N−1∑

k=0

(
2N − 1

k

)
yk (1− y)N−1−k.

For example,

P0(y) = 1,

P1(y) = 1 + 2y,

P2(y) = 1 + 3y + 6y2,

P3(y) = 1 + 4y + 10y2 + 20y3.
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Spectral Factorization.

We make the following definitions:

(a) P2N−1(y) = (1− y)N PN−1(y)

(b) P2N−1(z) = P2N−1(1/2− (z + z−1)/4)

(c) P̃4N−2(z) = z2N−1 P2N−1(z) =
∑4N−2

m=0 ãm zm,
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Some examples.

(a) N = 1

P0(y) = 1,

P1(y) = (1− y),

P1(z) = P1(1/2− (z + z−1)/4)

= −1

4
z−1 +

1

2
− 1

4
z,

P̃2(z) = z P1(z) = −1

4
+

1

2
z − 1

4
z2.

(b)N = 2

P1(y) = 1 + 2y,

P3(y) = (1− y)2 (1 + 2y),

P3(z) = P3(1/2− (z + z−1)/4)

=
1

32
(−z−3 + 9 z−1 + 16 + 9 z − z3),

P̃6(z) = z3 P3(z)

=
1

32
(−1 + 9 z2 + 16 z3 + 9 z4 − z6).
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(c)N = 3

P2(y) = 1 + 3y + 6y2,

P5(y) = (1− y)3 (1 + 3y + 6y2),

P5(z) = P5(1/2− (z + z−1)/4)

=
1

512
(3 z−5 − 25 z−3 + 150 z−1

+256 + 150 z − 25 z3 + 3 z5),

P̃10(z) = z5 P5(z)

=
1

512
(3− 25 z2 + 150 z4 + 256 z5

+150 z6 − 25 z8 + 3 z10).
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(d) N = 4

P3(y) = 1 + 4y + 10y2 + 20y3,

P7(y) = (1− y)4 (1 + 4y + 10y2 + 20y3),

P7(z) = P7(1/2− (z + z−1)/4)

=
1

4096
(−5 z−7 + 49 z−5 − 245 z−3

+1225 z−1 + 2048 + 1225 z

−245 z3 + 49 z5 − 5 z7),

P̃14(z) = z7 P7(z)

=
1

4096
(−5 + 49 z2 − 245 z4 + 1225 z6

+2048 z7 + 1225 z8

−245 z10 + 49 z12 − 5 z14).
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Theorem. For each N ∈ N, P2N−1(z) satis-

fies:

(a) P2N−1(z) =
2N−1∑

m=−2N+1

am zm for some real-

valued coefficients am.

(b) P2N−1(z) + P2N−1(−z) = 1 for all z ∈ C,

z 6= 0.

(c) P2N−1(z) ≥ 0 for |z| = 1.

(d) P2N−1(z) = P2N−1(z
−1) for all z ∈ C, z 6=

0.

(e) am = a−m for −2N + 1 ≤ m ≤ 2N − 1.

(f) am = 0 if m is even and m 6= 0, and a0 =

1/2.
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Remark. The zeros of P̃4N−2(z) fall into three

categories.

(1) The zero at −1 which must have multiplic-

ity 2N . Note also that always P̃4N−2(1) = 1.

(2) The real zeros not equal to −1. These

come in pairs, (z0, z−1
0 ). Since z0 6= ±1, one of

the pair must have absolute value less than 1

and the other absolute value greater than 1.

Define ZR by ZR = {z0 ∈ R: P̃4N−2(z0) =

0, |z0| < 1}.

(3) The nonreal zeros. These zeros come

in clusters of four, namely (z0, z−1
0 , z0, z0

−1).

Only one of these zeros can lie within the unit

circle and in the upper half–plane.

Define ZC by ZC = {z0 ∈ C: P̃4N−2(z0) =

0, |z0| < 1, =(z0) > 0}.



Theorem. Let N ∈ N. Then there exists a

polynomial B2N−1(z) of degree 2N − 1 with

real coefficients such that

P̃4N−2(z) = |B2N−1(z)|2.

Moreover, B2N−1(z) = (z + 1)N CN−1(z) for

some degree N − 1 polynomial CN−1(z) with

real coefficients.

Proof:

B2N−1(z) = |α|1/2 (z + 1)N

×
∏

z0∈ZR

|z0|−1/2 (z − z0)

×
∏

z0∈ZC

|z0|−1 (z − z0) (z − z0).
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Examples.

(a) With N = 2,

P̃6(z) =
1

32
(−1 + 9z2 + 16z3 + 9z4 − z6).

We factor

P̃6(z) =
1

32
(z + 1)4 (−z2 + 4z − 1)

− 1

32
(z + 1)4 (z − (2−

√
3)) (z − (2 +

√
3)).

Therefore,

B3(z)=
1

4
√

2
(z + 1)2 (2−

√
3)−1/2 (z − (2−

√
3))

=
1 +

√
3

8
(z + 1)2 (z − (2−

√
3))

=
1 +

√
3

8
z3 +

3 +
√

3

8
z2 +

3−√3

8
z +

1−√3

8
.
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(b) With N = 3,

P̃10(z) =
1

512
(3− 25 z2 + 75 z4 + 256 z5

+75 z6 − 25 z8 + 3 z10).

We factor

P̃10(z) =
1

512
(z + 1)6

(3z4 − 18z3 + 38z2 − 18z + 3)

=
3

512
(z + 1)6 (z − α) (z − α)

(z − α−1) (z − α−1),

where α ≈ .2873 + .1529 i and

B5(z) =

√
3

|α|16
√

2
(z + 1)3 (z − α) (z − α)
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