Multiresolution Analysis.

A new look at the Haar system.
Definition. For each 5 € Z, define the approx-
imation operator P; on L?(R), by

Pif(x) = > (f,pjx) pjr(x).

k
Define the approximation space Vj by

V; = 5pan{p; x(2)}rez.
Since {p; r(z):k € Z} is an orthonormal system

on R, P;f(x) is the function in V; best approx-
imating f(z) in the L? sense.

Define the detail operator Q; on L2(R), by
Q;f(x) = Pjp1f(z) — Pif(=x).

Define the wavelet space Wj by

W; = span{h; k(=) }rez-
Since {h; r(z)}rez IS an orthonormal system on

R Q;f(x) is the function in W; best approxi-
mating f(z) in the L? sense.



Theorem.(a) The scale J Haar system on R
is a complete orthonormal system on R. (The
scale J Haar system is

{pyr(x), hjr(z):j > J; k € Z}.

(b) The Haar system is a complete orthonor-
mal system on R. (The Haar system is

{hjn(@) ik € Z}).

Proving that the Haar system is a complete
orthonormal system on R amounts to showing
the following.

Theorem. (a) lim ||P;f — f|l> =0, and
j—00
(b) lim |[P;fll2 = 0.
j—00
(c) Given f e CO(R),

Qif(x) =) (f hjr) hjr(x).

k



Definition. A multiresolution analysis on R is
a sequence of subspaces {V;},cz C L?(R) sat-
isfying:

(@) Forall je€Z, V; C V4.

(b) span{V},cz = L*(R). That is, given f €
L?(R) and € > 0, thereis a j € Z and a func-
tion g(z) € V; such that ||f — g/l <e.

(c) Njez V; = {0}.

(d) A function f(x) € Vpifand only if D,; f(x) €
%3

(e) There exists a function ¢(z), L? on R,
called the scaling function such that the col-
lection {Th,p(x)} is an orthonormal system of
translates and

Vo = span{Tne(z)}.



Examples of MRA.

Note: In order to define an MRA it is suffi-
cient to either (1) specify Vy then show that
there is a scaling function ¢(x) such that Vy =
span{Tnp}, or (2) specify the scaling function
e(x) and define Vj = span{Tnp}.

(a) The Haar MRA. o(z) = poo(x) = 1[071](x).

(b) The Bandlimited MRA. 1} is the set of
all functions f bandlimited to [—1/2,1/2].



(c) The Meyer MRA.
Given k£ € N (or kK = o0), a function b(z) is
a C* bell function over [-1/2,1/2] provided
that b(z) is C* on R and satisfies the following
conditions:
(@) b(z) =1 if || < 1/3,
(b) b(z) = 0 if |z| > 2/3,
(c) 0<b(x) <1 forall xeR, and
(d) Y |p(z +n)|? = 1.

n

Now take ¢(x) to be the inverse Fourier trans-
form of a C* bell-function.



(d) The Piecewise Linear MRA. Let V[ con-
sist of all functions f € L2(R) n C°(R) linear
on the intervals IO,kr for kK € Z. Think of this
as a stepped-up version of the Haar MRA.

Define the function p(x) = (1 — |z|) 1[_171](@.

Lemma. If f € V then f(z) =) _ f(n) The(z)

pointwise and in L%(R).
Lemma. Vo = spani,p.

Theorem. There is a function &(z), L? on R,
such that:
(a) {Tne(x)} is an orthonormal system of trans-
lates, and

(b) Vo = Span{Tn@(x)}.



Some results about collections of the form {Tyg},,c7-

(a) If {Thg},cz is an orthonormal system on
R, then f € spanT,g if and only if

f(@) = (f, Tng) Tng(x)

n

in L2 if and only if there is a Fourier series é(v)
with period 1 such that

F(v) = a(v) é().

(b) The collection {Tng(x)} is an orthonormal
system of translates if and only if for all v € R,

S gy +n)lP=1.

(c) If for some 0 < A< B
A<M gty +mn)?<B
n

then there is a function g € L2(R), such that:
(i) {Thg(x)} is an orthonormal system of
translates and

(ii) span{Tng(z)} = span{Tng(x)}.



Wavelet basis from MRA
Theorem. (The two-scale relation) There ex-
ists {h(k)} € ¢2 such that
o(z) =Y h(k) 2202z — k)
k
in L2 on R. Moreover, we may write

o(v) = mo(v/2) p(v/2),
where

— i 6—27T7Zk
mo(y) = 7 Zk:h(k) v



Theorem. (The wavelet "recipe”) Let {V;} be
an MRA with scaling function ¢(x) and scaling
filter h(k). Define the wavelet filter g(k) by

g(k) = (-1)*r(1 - k)
and the wavelet ¢ (x) by

w(x) =Y g(k) 212 (22 — k).
k

Then
{¢j,k($)}j,kez

is a wavelet orthonormal basis on R.

Alternatively, given any J € Z,

{egk(@) ez UV k(®)} kez
iIs an orthonormal basis on R.

Remark. Taking the Fourier transform gives
that

b(v) = m1(v/2) $(v/2),

where

my(y) = e 2™ 0+L/2) (¥ 1/2),




(a) The Haar wavelet. In this case, we can
compute the scaling and wavelet filters directly.

o(2) = p(20)+p(22-1) = \29@10( )+ \f9011( ).

Therefore,
]_ .
— ifn=20, 1,
p(n) =4 v2 T
O ifn+#0,1,
T herefore,
(1 - _
ﬁ Ifn—O,
g(n) =< —\% ifn=1,
| 0 ifn#0, 1.
and

W(z) = \%9@1,0(1‘)—\%@1,1(%)

0(2x) — (2 — 1)
Lio,1/2)(x) — 1{1/2,1)(2).
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(b) The Bandlimited wavelet. Here it is
more convenient to work on the transform side.

Recall that ¢(v) = 1[_1/271/2)@). Since ¢(v/2) =
11_1 1)(7), it follows that

o(v) = mo(v/2) ¢(v/2),

where mg() is the period 1 extension of 1[_1/4,1/4)(7).

Thus, mq1(vy) is the period 1 extension of the
function

o—2mi(y+1/2) (A1/2-1/4)(0) + 117412y (1)
so that

P = mi1(v/2) #(1/2)
—e A1) () F 121 (1)

By taking the inverse Fourier transform,

sin(2wx) — cos(mx)
w(x —1/2)
sint(x —1/2)
w(x —1/2)

P(z) =

(1 —2sinmx).
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(c) The Meyer wavelet. Recall that

AN

o(v) =

( 0
1
s(v+1/2)
| c(y—1/2)

N\

if |v| > 2/3,

if [y <1/3,

if v € (1/3,2/3),
if v € (—2/3,—-1/3),

Therefore, ¢(v) = mo(v/2) p(v/2), where mg(7y)
is the period 1 extension of the function

P(2v) L _1/2,1/21(7).

W(x) is defined by

b(y) =

and

0
s(y—1/2)
c(v/2—-1/2)
s(v/2+1/2)
c(y+1/2)

—e ™ mo(v/2+1/2) ¢(v/2)

if |[y| <1/3 or |v| = 4/3,
if v e (1/3,2/3],

if v e (2/3,4/3),

if ve (—4/3,-2/3),

if v e[-2/3,—-1/3).
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(d) The Piecewise Linear wavelet. Recall
that

V33(7)
(14 2 cos?(my)) /2’
where ¢(x) = (1 — |x|) 1[_1,1](1:) and

o(y) = X ety +n)|2) "2

P(7) = ¢(7) () =

Also,
B(v) = cos?(my/2) p(v/2).
Therefore,

1 4+ 2 cos?(ny/2)
1 4+ 2 cos?(my)

2(7) = cos?(mv/2) ( )125(v/2),

so that

1+ 2 cos?(m) \1/2
14 2 cos?(2ny)”

mo(y) = cos?(my) (
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Therefore,

_ 2y gin2(n 14+ 2sin?(7y) 1,2
m1(y) e sin“( 7)(1 12 cos?(217) :
and

(y) = d(v/2) $(7/2).
where
d(7) = —V/3e ™ Sin2(7m//2)
« 1+ 2 sin?(ry) 1/2
(1 4+ 2 cos?(2my))(1 + 2 cos?(nv))
T herefore

(x) =) d(n) ¢1n(z),

where d(n) is the nt" Fourier coefficient of
d(y).
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