Multiresolution Analysis.

A new look at the Haar system.

Definition. For each $j \in \mathbb{Z}$, define the approximation operator P_j on $L^2(\mathbb{R})$, by

$$P_j f(x) = \sum_k \langle f, p_{j,k} \rangle p_{j,k}(x).$$

Define the approximation space V_j by

$$V_j = \overline{\operatorname{span}}\{p_{j,k}(x)\}_{k \in \mathbf{Z}}.$$

Since $\{p_{j,k}(x): k \in \mathbf{Z}\}$ is an orthonormal system on \mathbf{R} , $P_j f(x)$ is the function in V_j best approximating f(x) in the L^2 sense.

Define the detail operator Q_j on $L^2(\mathbf{R})$, by

$$Q_j f(x) = P_{j+1} f(x) - P_j f(x).$$

Define the wavelet space W_i by

$$W_j = \overline{\operatorname{span}}\{h_{j,k}(x)\}_{k \in \mathbf{Z}}.$$

Since $\{h_{j,k}(x)\}_{k\in\mathbb{Z}}$ is an orthonormal system on \mathbf{R} $Q_jf(x)$ is the function in W_j best approximating f(x) in the L^2 sense.

Theorem.(a) The scale J Haar system on \mathbf{R} is a complete orthonormal system on \mathbf{R} . (The scale J Haar system is

$$\{p_{J,k}(x), h_{j,k}(x): j \ge J; k \in \mathbf{Z}\}.$$

(b) The Haar system is a complete orthonormal system on ${\bf R}.$ (The Haar system is

$$\{h_{j,k}(x): j k \in \mathbf{Z}\}\).$$

Proving that the Haar system is a complete orthonormal system on ${\bf R}$ amounts to showing the following.

Theorem. (a) $\lim_{j \to \infty} ||P_j f - f||_2 = 0$, and

- **(b)** $\lim_{j\to\infty} ||P_j f||_2 = 0.$
- (c) Given $f \in C_c^0(\mathbf{R})$,

$$Q_j f(x) = \sum_{k} \langle f, h_{j,k} \rangle h_{j,k}(x).$$

Definition. A multiresolution analysis on \mathbf{R} is a sequence of subspaces $\{V_j\}_{j\in\mathbf{Z}}\subseteq L^2(\mathbf{R})$ satisfying:

- (a) For all $j \in \mathbb{Z}$, $V_j \subseteq V_{j+1}$.
- **(b)** $\overline{\text{span}}\{V_j\}_{j\in \mathbb{Z}}=L^2(\mathbf{R})$. That is, given $f\in L^2(\mathbf{R})$ and $\epsilon>0$, there is a $j\in \mathbb{Z}$ and a function $g(x)\in V_j$ such that $\|f-g\|_2<\epsilon$.
- (c) $\cap_{j \in \mathbb{Z}} V_j = \{0\}.$
- (d) A function $f(x) \in V_0$ if and only if $D_{2j}f(x) \in V_j$.
- (e) There exists a function $\varphi(x)$, L^2 on \mathbf{R} , called the *scaling function* such that the collection $\{T_n\varphi(x)\}$ is an orthonormal system of translates and

$$V_0 = \overline{\operatorname{span}}\{T_n\varphi(x)\}.$$

Examples of MRA.

Note: In order to define an MRA it is sufficient to either (1) specify V_0 then show that there is a scaling function $\varphi(x)$ such that $V_0 = \overline{\operatorname{span}}\{T_n\varphi\}$, or (2) specify the scaling function $\varphi(x)$ and define $V_0 = \overline{\operatorname{span}}\{T_n\varphi\}$.

- (a) The Haar MRA. $\varphi(x) = p_{0,0}(x) = 1_{[0,1]}(x)$.
- (b) The Bandlimited MRA. V_0 is the set of all functions f bandlimited to [-1/2, 1/2].

(c) The Meyer MRA.

Given $k \in \mathbb{N}$ (or $k = \infty$), a function b(x) is a C^k bell function over [-1/2, 1/2] provided that b(x) is C^k on \mathbb{R} and satisfies the following conditions:

(a)
$$b(x) = 1$$
 if $|x| \le 1/3$,

(b)
$$b(x) = 0$$
 if $|x| > 2/3$,

(c)
$$0 \le b(x) \le 1$$
 for all $x \in \mathbf{R}$, and

(d)
$$\sum_{n} |b(x+n)|^2 \equiv 1$$
.

Now take $\varphi(x)$ to be the inverse Fourier transform of a C^k bell-function.

(d) The Piecewise Linear MRA. Let V_0 consist of all functions $f \in L^2(\mathbf{R}) \cap C^0(\mathbf{R})$ linear on the intervals $I_{0,k}$, for $k \in \mathbf{Z}$. Think of this as a stepped-up version of the Haar MRA.

Define the function $\varphi(x) = (1 - |x|) \mathbf{1}_{[-1,1]}(x)$.

Lemma. If $f \in V_0$ then $f(x) = \sum_n f(n) T_n \varphi(x)$ pointwise and in $L^2(\mathbf{R})$.

Lemma. $V_0 = \overline{\operatorname{span}} T_n \varphi$.

Theorem. There is a function $\widetilde{\varphi}(x)$, L^2 on \mathbf{R} , such that:

- (a) $\{T_n\widetilde{\varphi}(x)\}$ is an orthonormal system of translates, and
- **(b)** $V_0 = \overline{\operatorname{span}}\{T_n\widetilde{\varphi}(x)\}.$

Some results about collections of the form $\{T_ng\}_{n\in\mathbb{Z}}$.

(a) If $\{T_ng\}_{n\in\mathbb{Z}}$ is an orthonormal system on \mathbb{R} , then $f\in\overline{\operatorname{span}}T_ng$ if and only if

$$f(x) = \sum_{n} \langle f, T_n g \rangle T_n g(x)$$

in L^2 if and only if there is a Fourier series $\widehat{c}(\gamma)$ with period 1 such that

$$\widehat{f}(\gamma) = \widehat{g}(\gamma) \, \widehat{c}(\gamma).$$

(b) The collection $\{T_ng(x)\}$ is an orthonormal system of translates if and only if for all $\gamma \in \mathbf{R}$,

$$\sum_{n} |\widehat{g}(\gamma + n)|^2 \equiv 1.$$

(c) If for some 0 < A < B

$$A \le \sum_{n} |\widehat{g}(\gamma + n)|^2 \le B$$

then there is a function $\tilde{g} \in L^2(\mathbf{R})$, such that:

- (i) $\{T_n\widetilde{g}(x)\}$ is an orthonormal system of translates and
 - (ii) $\overline{\text{span}}\{T_ng(x)\} = \overline{\text{span}}\{T_n\widetilde{g}(x)\}.$

Wavelet basis from MRA

Theorem. (The two-scale relation) There exists $\{h(k)\}\in\ell^2$ such that

$$\varphi(x) = \sum_{k} h(k) 2^{1/2} \varphi(2x - k)$$

in L^2 on \mathbf{R} . Moreover, we may write

$$\widehat{\varphi}(\gamma) = m_0(\gamma/2)\,\widehat{\varphi}(\gamma/2),$$

where

$$m_0(\gamma) = \frac{1}{\sqrt{2}} \sum_k h(k) e^{-2\pi i k \gamma}.$$

Theorem. (The wavelet "recipe") Let $\{V_j\}$ be an MRA with scaling function $\varphi(x)$ and scaling filter h(k). Define the wavelet filter g(k) by

$$g(k) = (-1)^k \overline{h(1-k)}$$

and the wavelet $\psi(x)$ by

$$\psi(x) = \sum_{k} g(k) 2^{1/2} \varphi(2x - k).$$

Then

$$\{\psi_{j,k}(x)\}_{j,k\in\mathbf{Z}}$$

is a wavelet orthonormal basis on ${f R}$.

Alternatively, given any $J \in \mathbf{Z}$,

$$\{\varphi_{J,k}(x)\}_{k\in\mathbf{Z}}\cup\{\psi_{j,k}(x)\}_{j,k\in\mathbf{Z}}$$

is an orthonormal basis on R.

Remark. Taking the Fourier transform gives that

$$\widehat{\psi}(\gamma) = m_1(\gamma/2)\,\widehat{\varphi}(\gamma/2),$$

where

$$m_1(\gamma) = e^{-2\pi i(\gamma + 1/2)} \overline{m_0(\gamma + 1/2)},$$

(a) The Haar wavelet. In this case, we can compute the scaling and wavelet filters directly.

$$\varphi(x) = \varphi(2x) + \varphi(2x-1) = \frac{1}{\sqrt{2}}\varphi_{1,0}(x) + \frac{1}{\sqrt{2}}\varphi_{1,1}(x).$$

Therefore,

$$h(n) = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } n = 0, 1, \\ 0 & \text{if } n \neq 0, 1, \end{cases}$$

Therefore,

$$g(n) = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } n = 0, \\ -\frac{1}{\sqrt{2}} & \text{if } n = 1, \\ 0 & \text{if } n \neq 0, 1. \end{cases}$$

and

$$\psi(x) = \frac{1}{\sqrt{2}}\varphi_{1,0}(x) - \frac{1}{\sqrt{2}}\varphi_{1,1}(x)$$
$$= \varphi(2x) - \varphi(2x - 1)$$
$$= \mathbf{1}_{[0,1/2)}(x) - \mathbf{1}_{[1/2,1)}(x).$$

(b) The Bandlimited wavelet. Here it is more convenient to work on the transform side. Recall that $\widehat{\varphi}(\gamma) = \mathbf{1}_{[-1/2,1/2)}(\gamma)$. Since $\widehat{\varphi}(\gamma/2) = \mathbf{1}_{[-1,1)}(\gamma)$, it follows that

$$\widehat{\varphi}(\gamma) = m_0(\gamma/2)\,\widehat{\varphi}(\gamma/2),$$

where $m_0(\gamma)$ is the period 1 extension of $\mathbf{1}_{[-1/4,1/4)}(\gamma)$

Thus, $m_1(\gamma)$ is the period 1 extension of the function

$$e^{-2\pi i(\gamma+1/2)} \left(1_{[-1/2,-1/4)}(\gamma) + 1_{[1/4,1/2)}(\gamma)\right)$$

so that

$$\widehat{\psi}(\gamma) = m_1(\gamma/2)\,\widehat{\varphi}(\gamma/2) = -e^{-\pi i \gamma} (\mathbf{1}_{[-1,-1/2)}(\gamma) + \mathbf{1}_{[1/2,1)}(\gamma)).$$

By taking the inverse Fourier transform,

$$\psi(x) = \frac{\sin(2\pi x) - \cos(\pi x)}{\pi(x - 1/2)}$$
$$= \frac{\sin\pi(x - 1/2)}{\pi(x - 1/2)} (1 - 2\sin\pi x).$$

(c) The Meyer wavelet. Recall that

$$\widehat{\varphi}(\gamma) = \begin{cases} 0 & \text{if } |\gamma| \ge 2/3, \\ 1 & \text{if } |\gamma| \le 1/3, \\ s(\gamma + 1/2) & \text{if } \gamma \in (1/3, 2/3), \\ c(\gamma - 1/2) & \text{if } \gamma \in (-2/3, -1/3), \end{cases}$$

Therefore, $\widehat{\varphi}(\gamma) = m_0(\gamma/2) \widehat{\varphi}(\gamma/2)$, where $m_0(\gamma)$ is the period 1 extension of the function

$$\widehat{\varphi}(2\gamma) \, \mathbf{1}_{[-1/2,1/2]}(\gamma).$$

 $\psi(x)$ is defined by

$$\widehat{\psi}(\gamma) = -e^{-\pi i \gamma} \, \overline{m_0(\gamma/2 + 1/2)} \, \widehat{\varphi}(\gamma/2)$$

and

$$\widehat{\psi}(\gamma) = \begin{cases} 0 & \text{if } |\gamma| \le 1/3 \text{ or } |\gamma| \ge 4/3, \\ s(\gamma - 1/2) & \text{if } \gamma \in (1/3, 2/3], \\ c(\gamma/2 - 1/2) & \text{if } \gamma \in (2/3, 4/3), \\ s(\gamma/2 + 1/2) & \text{if } \gamma \in (-4/3, -2/3), \\ c(\gamma + 1/2) & \text{if } \gamma \in [-2/3, -1/3). \end{cases}$$

(d) The Piecewise Linear wavelet. Recall that

$$\widehat{\widehat{\varphi}}(\gamma) = \widehat{\varphi}(\gamma) \, \Phi(\gamma) = \frac{\sqrt{3} \, \widehat{\varphi}(\gamma)}{(1 + 2 \cos^2(\pi \gamma))^{1/2}},$$

where $\varphi(x) = (1 - |x|) \mathbf{1}_{[-1,1]}(x)$ and

$$\Phi(\gamma) = \left(\sum_{n} |\widehat{\varphi}(\gamma + n)|^2\right)^{-1/2}.$$

Also,

$$\widehat{\varphi}(\gamma) = \cos^2(\pi \gamma/2) \, \varphi(\gamma/2).$$

Therefore,

$$\widehat{\widetilde{\varphi}}(\gamma) = \cos^2(\pi\gamma/2) \left(\frac{1 + 2\cos^2(\pi\gamma/2)}{1 + 2\cos^2(\pi\gamma)}\right)^{1/2} \widehat{\widetilde{\varphi}}(\gamma/2),$$

so that

$$m_0(\gamma) = \cos^2(\pi \gamma) \left(\frac{1 + 2 \cos^2(\pi \gamma)}{1 + 2 \cos^2(2\pi \gamma)} \right)^{1/2}.$$

Therefore,

$$m_1(\gamma) = -e^{-2\pi i \gamma} \sin^2(\pi \gamma) \left(\frac{1+2\sin^2(\pi \gamma)}{1+2\cos^2(2\pi \gamma)}\right)^{1/2}.$$

and

$$\widehat{\psi}(\gamma) = d(\gamma/2)\,\widehat{\varphi}(\gamma/2).$$

where

$$d(\gamma) = -\sqrt{3} e^{-\pi i \gamma} \sin^2(\pi \gamma/2) \times \left(\frac{1 + 2 \sin^2(\pi \gamma)}{(1 + 2 \cos^2(2\pi \gamma))(1 + 2 \cos^2(\pi \gamma))}\right)^{1/2}$$

Therefore

$$\psi(x) = \sum_{n} d(n) \, \varphi_{1,n}(x),$$

where d(n) is the n^{th} Fourier coefficient of $d(\gamma)$.