9.2/9.3 Continuous Functions.

A. Definition of Continuity.

<u>Definition.</u> Let $f: D \to \mathbb{E}^m$, where $D = D_f \subseteq \mathbb{E}^n$. Let $a \in D$. We say that f is *continuous at* a if for every $\epsilon > 0$ there is a $\delta > 0$ such that for every $x \in D \cap B(a, \delta)$, $||f(x) - f(a)|| < \epsilon$.

We say that f is *continuous on* D if it is continuous at every point of D and we write $f \in C(D)$.

<u>Theorem.</u> A function f is continuous at a limit point f if and only if

$$\lim_{x\to a} f(x) = f(a).$$

Proof.

<u>Definition.</u> A set $E \subseteq \mathbb{E}^n$ is *relatively open in* $D \subseteq \mathbb{E}^n$ if there is an open set U in \mathbb{E}^n such that $E = U \cap D$. E is *relatively closed in* D if there is a closed set $F \subseteq \mathbb{E}^n$ such that $E = F \cap D$.

Remark. (a) Note that for E to be relatively open or relatively closed in D it must be true that $E \subseteq D$.

- (b) The concept of *open* and *closed* in a normed vector space is dependent on the space in which the set is assumed to sit. In other words, a set *E* is not simply open or closed, but is only open or closed *as a subset of some other set*.
- (c) For example, the set [0,1] is not open as a subset of \mathbb{R} (the ambient vector space), but is open as a subset of [0,1], that is if we assume that our ambient vector space is [0,1].

Theorem (9.2.3). A subset $E \subseteq D$ is relatively open in D if and only if for every $x \in E$, there is a $\delta > 0$ such that $B(x, \delta) \cap D \subseteq E$.

Proof.

<u>Theorem</u>. (9.2.4). Let $\mathbb{f}: D \to \mathbb{E}^n$. Then $\mathbb{f} \in C(D)$ if and only if for every open set U in \mathbb{E}^n , the inverse image

 $f^{-1}(U) = \{x \in D : f(x) \in U\}$ is relatively open in D.

Remark. (a) Note that it is not necessarily true that the forward image of an open set by a continuous function is open.

(b) Nor is it necessarily true that the forward image of a closed set by a continuous function is closed.

Theorem (9.3.1). Let $f \in C(D)$, $f: D \to \mathbb{E}^m$. If D is compact, then $f(D) = \{f(x): x \in D\}$ is compact.

Theorem (Extreme Value Theorem). If $D \subseteq \mathbb{E}^n$ is compact and if $f \in C(D)$, is a real-valued function, then f achieves is maximum and minimum values on D. In other words, there exist points x_M and $x_m \in D$ such that $f(x) \leq f(x_M)$ and $f(x) \geq x_m$ for all $x \in D$.

<u>Theorem</u> (9.3.3) (Open Mapping Theorem.) Let $f \in C(D)$, $f: D \to \mathbb{E}^m$, f is one-to-one. If D is compact then f^{-1} is continuous. <u>Corollary</u>. Under the hypotheses of the Theorem, the forward image of a relatively open set in D is open in \mathbb{E}^m .