- 9.1 Limits of Functions.
 - A. Definition of limit.
 - 1. <u>Definition</u>. We will consider *vector-valued* functions, $f: D \to \mathbb{E}^m$, with domain $D = D_f \subseteq \mathbb{E}^n$. We write

$$f(\mathbf{x}) = f(x_1, ..., x_n) = (f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_m(\mathbf{x}))$$

where $f_i: D \to \mathbb{R}$ and we usually write
 $f_i(\mathbf{x}) = f_i(x_1, x_2, ..., x_n)$.

2. <u>Definition</u>. Let a be a limit point (cluster point) of the domain D_{f} of a function f. Then

$$\lim_{x\to a} f(x) = L$$

if for all $\epsilon > 0$ there is an $\delta > 0$ such that for all $x \in D_f$, if $0 < ||x - a|| < \delta$, then $||f(x) - L|| < \epsilon$.

3. Remark. If a is an isolated point of $D_{\mathbb{f}}$ then it does not make sense to talk about $\lim_{x\to a} f(x)$.

Theorem 1. (9.1.1) Suppose that a is a limit point of the domain D_{f} of the function f. Then the following are equivalent

a. $\lim_{x\to a} f(x) = L$.

b. For every sequence $\{x^{(j)}\}\in D_{\mathbb{f}}$, with $x^{(j)}\neq a$ for all j, such that $x^{(j)}\to a$, $\lim_{j\to\infty} \mathbb{f}\big(x^{(j)}\big)=\mathbb{L}$.

Proof.

4. Example. Find $\lim_{(x,y)\to(0,0)} \frac{\sin(x)\sin(y)}{x^2+y^2}$ or prove it does not exist.

5. Example. Find $\lim_{(x,y)\to(0,0)} \frac{x^2+y^4}{x^2+2y^4}$ or prove it does not exist.

6. Example. Find $\lim_{(x,y)\to(0,0)} \frac{x^3-y^3}{x^2+y^2}$ or prove it does not exist.