8.3. Compact Sets.

- A. The Bolzano-Weierstrass Theorem.
 - 1. <u>Theorem.</u> (Bolzano-Weierstrass) Every bounded sequence of real numbers has a convergent subsequence.
 - 2. Theorem. (Bolzano-Weierstrass) Every bounded sequence \mathbf{x}^k in \mathbb{R}^n has a convergent subsequence.

Proof:

- 3. Remarks.
 - a. We want to characterize the sets that have a property like that described in the B-W Theorem, specifically: For which sets A is it true that any sequence $\{x^k\} \subseteq A$ has a convergent subsequence?
 - b. B-W Theorem says that if *A* is a closed ball, this property holds.
 - c. It is also possible to think of this property as saying: Which subsets of \mathbb{R} are most like finite sets in a particular sense?
- 4. <u>Definition.</u> (8.3.1) An *open cover* of a subset $S \subseteq \mathbb{R}$ is a collection of open sets (possibly infinite) $\mathcal{O} = \{O_{\alpha} : \alpha \in A\}$ such that $S \subseteq \bigcup_{\alpha \in A} O_{\alpha}$. The set S is said to be *compact* if every open cover of S has a finite subcover, that is if $\{O_{\alpha} : \alpha \in A\}$ is an open cover of S then there exist indices $\alpha_1, \alpha_2, ..., \alpha_n$ such that $S \subseteq \bigcup_{k=1}^n O_{\alpha_k}$.
- 5. Examples. (a) An open ball B(a,r) is not compact.
 - (b) A finite subset of \mathbb{R}^n is compact.

- 6. Theorem. A closed ball in \mathbb{R}^n is compact.
- 7. Claim: Any open cover of a set $A \subseteq \mathbb{R}^n$ admits a *countable* subcover.

Proof of Claim:

Proof of Theorem:

8. Theorem. (8.3.1) A set $A \subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded.

Proof.

- 9. Theorem. Let $A \subseteq \mathbb{R}^n$. Then the following are equivalent.
 - a. A is compact.
 - b. A is closed and bounded.
 - c. Every sequence of points in A has a limit point in A, that is, every sequence in A has a convergent subsequence.

Proof: