8.1. Euclidean Space.

<u>Definition.</u> Let n be a natural number. The set \mathbb{R}^n , defined by

 $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \{(x_1, x_2, ..., x_n) : x_j \in \mathbb{R}\}$ Is the Cartesian product of n copies of \mathbb{R} . We usually write $\mathbb{X} = (x_1, x_2, ..., x_n)$.

Remark. (a) \mathbb{R}^2 is the Cartesian plane and \mathbb{R}^3 is Cartesian 3-space. We say \mathbb{R}^n is Euclidean n-space.

- (b) $\mathbb{X} = (x_1, x_2, ..., x_n) = \mathbb{Y} = (y_1, y_2, ..., y_n)$ if and only if $x_j = y_j$ for all j. The vector $\mathbb{O} = (0,0,...,0)$ is the zero vector or the origin.
- (c) So far, \mathbb{R}^n has been defined only as a set, but other structure can be imposed on it.

A. Algebraic structure

 \mathbb{R}^n is a *vector space* (see the definition and axioms on p. 59).

B. Geometric Structure

1. <u>Definition</u>. The *dot product* (or *scalar product*, or *inner product*) of $x, y \in \mathbb{R}^n$, denoted $x \cdot y$ or $\langle x, y \rangle$ is given by

$$x \cdot y = \langle x, y \rangle = \sum_{j=1}^{n} x_j y_j$$

- 2. The interaction of the algebraic and geometric structure of \mathbb{R}^n is given in Definition 8.1.1 in the book. This definition also gives the defining characteristics of a scalar product.
- 3. The inner product defines a geometric structure on \mathbb{R}^n because it allows us to define a notion of the *angle between* \mathbb{X} *and* \mathbb{Y} . More on this later.

C. Topological Structure

1. <u>Definition</u>. The *(Euclidean) norm* of $x \in \mathbb{R}^n$, denoted ||x|| or sometimes $||x||_2$ is

$$\|\mathbf{x}\| = \left(\sum_{j=1}^{n} x_j^2\right)^{1/2} = (\langle \mathbf{x}, \mathbf{x} \rangle)^{1/2}$$

- 2. Remark. (a) $\|\mathbf{x}\|$ is the usual notion of the length of the arrow representing the vector $\mathbf{x} \in \mathbb{R}^2$ or \mathbb{R}^3 and generalizes the notion of absolute value on \mathbb{R} .
 - (b) The norm defines a notion of *distance* by denoting the distance between x and y as ||x y|| = ||y x||.
- 3. Now that we have a notion of distance in \mathbb{R}^n , we can talk about convergence of sequences, viz.

<u>Definition.</u> Let $x^{(k)}$ be a sequence in \mathbb{R}^n . We say that $x^{(k)} \to x$ if $||x^{(k)} - x|| \to 0$ as $k \to \infty$.

4. Theorem.

A sequence $\mathbf{x}^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)})$ in \mathbb{R}^n converges to $\mathbf{x} = (x_1, x_2, \dots, x_n)$ in \mathbb{R}^n if and only if for each j, $\lim_{k \to \infty} x_j^{(k)} = x_j$.

Proof:

- D. Interaction of topological and geometric structure.
 - 1. Claim. $\|x y\|^2 = \|x\|^2 + \|y\|^2 2\langle x, y \rangle$

- 2. If $x, y \in \mathbb{R}^2$ then the Law of Cosines says that $\|x y\|^2 = \|x\|^2 + \|y\|^2 2\|x\|\|y\| \cos \theta$ where θ is the angle between x and y.
- 3. This implies that $\langle x, y \rangle = ||x|| ||y|| \cos \theta$ and therefore we can *define* the angle between any two vectors in \mathbb{R}^n in this way.

4. Theorem. (Cauchy-Schwarz inequality) Given $x, y \in \mathbb{R}^n$, $|\langle x, y \rangle| \le ||x|| ||y||$ with equality holding if and only if x and y are parallel, that is, one is a scalar multiple of the other.

Proof:

- 5. Theorem. Let $x, y \in \mathbb{R}^n$. Then
 - a. $\|\mathbf{x}\| \ge 0$ with equality holding if and only if $\mathbf{x} = \mathbf{0}$.
 - b. $\|\alpha x\| = \|\alpha\|\|x\|$ for all $\alpha \in \mathbb{R}$.
 - c. $\|x + y\| \le \|x\| + \|y\|$. (Triangle inequality)

Proof: