5.5/5.6. The Weierstrass *M*-test and Power Series.

<u>Definition</u>. A sequence of functions $f_k(x)$ defined on a domain *D* converges to the function f(x)pointwise on *D* if for each $x \in D$ the numerical sequence $f_k(x)$ converges to f(x). The convergence is *uniform* if

 $sup_{x\in D} |f_k(x) - f(x)| \to 0$ As $k \to \infty$. The series $\sum_{k=1}^{\infty} f_k(x)$ converges pointwise (resp. uniformly) on *D* if the sequence of partial sums $s_n(x) = \sum_{k=1}^n f_k(x)$ converges pointwise (resp. uniformly) on *D*.

<u>Theorem 5.5.2.</u> (Weierstrass *M*-test) Let $f_k(x)$ be a sequence of functions defined on a domain *D*. Let

 $M_n = \sup_{x \in D} |f_n(x)| = ||f_n||_{\sup} < \infty$ If $\sum_{n=1}^{\infty} M_n < \infty$ then the series $\sum_{k=1}^{\infty} f_k(x)$ converges absolutely and uniformly on *D*.

Proof:

Definition (Power Series)

A *power* series centered at *a* (or with *base* point *a*) is an infinite series of the form

$$\sum_{k=0}^{\infty} c_k (x-a)^k$$

where c_k is a sequence of real coefficients.

<u>Theorem</u> 5.6.1. Given a power series $f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$, there exists a number $0 \le R \le \infty$, called the *radius of convergence* with the property that the series converges absolutely on the interval |x - a| < R, absolutely and uniformly on any interval $[\alpha, \beta] \subseteq (a - R, a + R)$, and diverges for |x - a| > R.

Proof:

<u>Theorem.</u> (Abel) Let a < b. If the power series $f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$ converges pointwise on [a, b], then f(x) is continuous and converges uniformly on [a, b].

Proof.

<u>Theorem.</u> If $f(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$ has radius of convergence R > 0, then f is infinitely differentiable on (a - R, a + R), and $f^{(n)}$ is given by

$$f^{(n)}(x) = \sum_{k=n}^{\infty} k(k-1)\cdots(k-n+1)c_k(x-a)^{k-n}$$

which power series also has radius of convergence R.

Proof: