5.3. Products of Series.

Theorem 5.3.2. If x,, and y, are absolutely
summable, then so is the doubly indexed

sequence {x; Yy} =1 and
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Proof:




Definition (Cauchy product)
Given sequences x;, y;, define their Cauchy

product{c,};2, by
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Corollary. If x; and y, are absolutely summable,
then

Proof;




Definition. (Iterated Sums) Let q; , be a doubly

indexed sequence. The Jterated sum of the
sequence is defined as the series.
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In other words, if we define the sequence c;, by
Cr = 2})(;1 a; i then
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Remark Note that the iterated sum is not a
rearrangement of the series Y7, _; a; . -



Theorem. If g; ; is absolutely summable then
(0.9) (0.0] (0.0) (0.0)
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Proof.



