5.2. Convergence Tests.

<u>Theorem.</u> A series $\sum_{n=1}^{\infty} x_n$ of nonnegative terms, that is, for which $x_n \ge 0$ for all *n*, converges if and only if the sequence of partial sums is bounded.

Proof:

<u>Theorem 5.2.2.</u> (Integral Test.) Suppose *f* is Riemann integrable on $[1, \infty)$, that is, it is integrable on [1, b] for every b > 0, is monotone decreasing and approaches 0 as $x \to \infty$. Then the series $\sum_{n=1}^{\infty} f(n)$ converges if and only if

$$\int_{1}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{1}^{b} f(x) \, dx < \infty$$

Proof:

<u>Example.</u> The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

<u>Theorem.</u> (Ratio Test.) Suppose that $x_k > 0$ for all k. If

$$liminf_{k\to\infty}\frac{x_{k+1}}{x_k} > 1$$

then the series $\sum_{n=1}^{\infty} x_n$ diverges. If

$$limsup_{k\to\infty}\frac{x_{k+1}}{x_k} < 1$$

then the series $\sum_{n=1}^{\infty} x_n$ converges.

Proof.

Example 5.19(a). Show that $\sum_{k=0}^{\infty} \frac{k!}{k^k}$

converges.