5.1 Series of Constants (continued).

<u>Definition 5.1.2</u> (Absolute convergence) Let x_n be a sequence of numbers. The series $\sum_{n=1}^{\infty} x_n$ converges absolutely if the series $\sum_{n=1}^{\infty} |x_n|$ converges. In this case, we say that the sequence x_n is absolutely summable. A series that is convergent but not absolutely convergent is called *conditionally convergent*.

<u>Theorem 5.1.3.</u> Every absolutely summable sequence is summable.

<u>Definition.</u> (Unconditional convergence.) A sequence y_n is a *rearrangement* of a sequence x_n if there is a bijection $f: \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, $y_n = x_{f(n)}$. A series $\sum_{n=1}^{\infty} x_n$ is *unconditionally convergent* if every rearrangement y_n of x_n is summable.

<u>Lemma.</u> If $\sum_{n=1}^{\infty} x_n$ is *unconditionally convergent* then for every rearrangement y_n ,

$$\sum_{n=1}^{\infty} y_n = \sum_{n=1}^{\infty} x_n$$

<u>Theorem.</u> A series $\sum_{n=1}^{\infty} x_n$ is absolutely convergent if and only if it is unconditionally convergent.

Proof.

Example 5.3. (Geometric series)

Given numbers a and r (not necessarily real), the series $\sum_{k=0}^{\infty} ar^k$ is called a *geometric series* with common ratio r.

<u>Lemma.</u> For any $r \neq 1$,

$$s_n = \sum_{k=0}^n r^k = \frac{1 - r^{n+1}}{1 - r}$$

Theorem. The geometric series $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$ if |r| < 1 and diverges otherwise (if $a \neq 0$).