5.1 Series of Constants.

Definition 5.1.1 (Convergent series) Let x_n be a sequence of numbers. The *(infinite) series* $\sum_{n=1}^{\infty} x_n$ converges to *s* if the sequence of partial sums, $s_n = \sum_{k=1}^n x_k$ converges to *s*. In this case, we say that the sequence of terms x_n is *summable* and that the corresponding series is *convergent*. Otherwise, we say that the series is *divergent*.

<u>Lemma.</u> (Cauchy criterion.) The series $\sum_{n=1}^{\infty} x_n$ converges if and only if the sequence of partial sums, $s_n = \sum_{k=1}^n x_k$ is Cauchy, that is, given $\epsilon > 0$, there is an *N* such that if $n, m \ge N$ then $|s_n - s_{m-1}| = |\sum_{k=m}^n x_k| < \epsilon$.

<u>Theorem 5.1.1</u> (n^{th} term test) If x_n is a summable sequence, then $x_n \rightarrow 0$.

Proof.

<u>Theorem</u>: The *harmonic series* $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

<u>Theorem.</u> (Abel's Formula or Summation by Parts.)

Let a_n and b_n be real-valued sequences and let $A_n = \sum_{k=1}^n a_k$. Then for all n > 1 $\sum_{k=1}^n a_k b_k = A_n b_n - \sum_{k=1}^{n-1} A_k (b_{k+1} - b_k)$

<u>Theorem.</u> (Dirichlet's Test) Let a_n and b_n be real-valued sequences and suppose that $s_n = \sum_{k=1}^n a_k$ is a bounded sequence and that $b_n \downarrow 0$ (that is, the sequence b_n is decreasing and converges to 0). Then $\sum_{n=1}^{\infty} a_n b_n$ converges.

<u>Theorem.</u> (Alternating Series Test) Suppose that $x_n \downarrow 0$. Then the (alternating) series $\sum_{n=1}^{\infty} (-1)^n x_n$ converges. Moreover, if $s = \sum_{n=1}^{\infty} (-1)^n x_n$ then $|s_n - s| \le x_{n+1}$.

<u>Theorem.</u> (Convergence of trigonometric series -Dirichlet) Suppose that $a_n \downarrow 0$. Then for every $x \in \mathbb{R}$, $\sum_{n=1}^{\infty} a_n \sin(nx)$ converges.