Exercise 10.1.

Solution:

We will show that

$$\sup_{\mathbf{x}\neq 0} \frac{\|L\mathbf{x}\|}{\|\mathbf{x}\|} = \inf\{C: \|L\mathbf{x}\| \le C \|\mathbf{x}\|, \forall \mathbf{x} \in \mathbf{E}^n\}.$$

Let $A = \sup_{\mathbf{x}\neq 0} \|L\mathbf{x}\| / \|\mathbf{x}\|$. Then A is an upper bound of the set $\{\|L\mathbf{x}\| / \|\mathbf{x}\|, \mathbf{x}\neq 0\}$ and hence for all $\mathbf{x}\neq 0$, $\|L\mathbf{x}\| \le A \|\mathbf{x}\|$, and clearly the inequality also holds for $\mathbf{x} = 0$. Therefore, $A \in \{C: \|L\mathbf{x}\| \le C \|\mathbf{x}\|, \forall \mathbf{x}\}$ and

$$\inf\{C: \|L\mathbf{x}\| \le C \|\mathbf{x}\|, \forall \mathbf{x} \in \mathbf{E}^n\} \le A = \sup_{\mathbf{x} \ne 0} \frac{\|L\mathbf{x}\|}{\|\mathbf{x}\|}.$$

Given $A \in \{C: ||L\mathbf{x}|| \leq C ||\mathbf{x}||, \forall \mathbf{x}\}, ||L\mathbf{x}|| \leq A ||\mathbf{x}||$ for all $\mathbf{x} \neq 0$. Hence A is an upper bound of the set $\{\frac{||L\mathbf{x}||}{||\mathbf{x}||}, \mathbf{x} \neq 0\}$, and so $\sup_{\mathbf{x}\neq 0} \frac{||L\mathbf{x}||}{||\mathbf{x}||} \leq A$. Therefore, taking the infimum over all such A, we have that

$$\sup_{\mathbf{x}\neq 0} \frac{\|L\mathbf{x}\|}{\|\mathbf{x}\|} \le \inf\{C: \|L\mathbf{x}\| \le C \|\mathbf{x}\|, \forall \mathbf{x} \in \mathbf{E}^n\}.$$

This last inequality is all that is needed to do the problem as stated.

Exercise 10.4.

Solution:

By the triangle inequality for the Euclidean norm, if $\mathbf{x} \in \mathbf{E}^n$ then

$$\|(L+L')\mathbf{x}\| = \|L\mathbf{x}+L'\mathbf{x}\| \le \|L\mathbf{x}\| + \|L'\mathbf{x}\| \le \|L\|\|\mathbf{x}\| + \|L'\|\|\mathbf{x}\| = (\|L\|+\|L'\|)\|\mathbf{x}\|$$

This means that the number ||L|| + ||L'|| is in the set $\{C: ||(L+L')\mathbf{x}|| \le C ||\mathbf{x}||, \forall \mathbf{x} \in \mathbf{E}^n\}$. Since ||L+L'|| is the infimum of all such numbers, $||L+L'|| \le ||L|| + ||L'||$.

Exercise 10.11.

Solution:

(a). we must show that the sequence T_K is Cauchy in the space of linear operators on \mathbf{E}^n , $\mathcal{L}(\mathbf{E}^n)$. That is, we must show that given $\epsilon > 0$ there is an N such that if $n, m \geq N$ then $||T_n - T_m|| < \epsilon$ where $|| \cdot ||$ is the operator norm. Since $T_K = \sum_{k=0}^K X^k$, then by the triangle inequality and Exercise 10.8(b),

$$||T_n - T_m|| = \left\|\sum_{k=m+1}^n X^k\right\| \le \sum_{k=m+1}^n ||X^k|| \le \sum_{k=m+1}^n ||X||^k.$$

Since ||X|| < 1, the series $\sum ||X||^k$ converges, and hence there is an N such that if $n, m \ge N$ then $\sum_{k=m+1}^n ||X||^k < \epsilon$. Hence for such $n, m, ||T_n - T_m|| < \epsilon$. By the completeness of $\mathcal{L}(\mathbf{E}^n)$ (Exercise 10.10), there is a $T \in \mathcal{L}(\mathbf{E}^n)$ such that $T_K \to T$, that is, $||T_K - T|| \to 0$ as $K \to \infty$.

(b). Note that

$$(I - X)T_{K} - I = T_{K} - XT_{K} - I$$

= $\sum_{k=0}^{K} X^{k} - X \sum_{k=0}^{K} X^{k} - X^{0}$
= $\sum_{k=0}^{K} X^{k} - \sum_{k=1}^{K+1} X^{k} - X^{0}$
= $\sum_{k=1}^{K} X^{k} - \sum_{k=1}^{K+1} X^{k} = -X^{K+1}$

Therefore,

$$||(I - X)T_K - I|| = ||X^{K+1}|| \le ||X||^{K+1} \to 0$$

as $K \to \infty$. Therefore, $(I - X)T_K \to I$ as $K \to \infty$.

(c). Note that by Exercise 10.4 and 10.8(a),

$$\begin{aligned} \|(I-X)T_K - (I-X)T\| &= \|(I-X)(T_K - T)\| \\ &\leq \|(I-X)\|\|T_K - T\| \\ &\leq (\|I\| + \|X\|)\|(T_K - T\| \le 2\|T_K - T\|. \end{aligned}$$

Since $||T_K - T|| \to 0$ as $K \to \infty$, $(I - X)T_K \to (I - X)T$ as $K \to \infty$. But by part (b) $(I - X)T_K$ also converges to I. Therefore, (I - X)T = I. In order to show that $(I - X)^{-1} = T$ it only remains to show that T(I - X) = I. But this follows because for each K,

$$T_K(I-X) = \sum_{k=0}^K X^k - X \sum_{k=0}^K X^k = \sum_{k=0}^K X^k - \sum_{k=1}^{K+1} X^k = I - X^{K+1}.$$

But by the calculation in part (b), $(I-X)T_K = I - X^{K+1}$. Therefore, $T_K(I-X) = (I-X)T_K$ so that by taking limits as $K \to \infty$, T(I-X) = (I-X)T = I.