Exercise 8.41.

Solution:

 $(\Longrightarrow) Suppose that \lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L. We must show that the Cauchy condition is satisfied. By definition, given <math>\epsilon > 0$ there is a $\delta > 0$ such that if $0 < ||\mathbf{x}-\mathbf{a}|| < \delta$ then $||f(\mathbf{x})-L|| < \epsilon/2$. Therefore, if $\mathbf{x}, \mathbf{x}' \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}$ then $0 < ||\mathbf{x}-\mathbf{a}|| < \delta$ and $0 < ||\mathbf{x}'-\mathbf{a}|| < \delta$. Hence $||f(\mathbf{x})-f(\mathbf{x}')|| \le ||f(\mathbf{x})-L|| + ||f(\mathbf{x}')-L|| < \epsilon/2 + \epsilon/2 = \epsilon$.

(\Leftarrow) Suppose that the Cauchy condition is satisfied. We must show that $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x})$ exists. We will do this by using the sequential criterion for limits, namely that $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$ if and only if for every sequence \mathbf{x}_n converging to \mathbf{a} with $\mathbf{x}_n \neq \mathbf{a}$ for all $n, f(\mathbf{x}_n) \to L$. Let \mathbf{x}_n be a sequence in the domain of f that converges to \mathbf{a} but never equals \mathbf{a} . Given ϵ , there is a δ such that if $\mathbf{x}, \mathbf{x}' \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}$, then $||f(\mathbf{x}) - f(\mathbf{x}')|| < \epsilon$. Choose N so large that if $n \geq N$ then $||\mathbf{x}_n - \mathbf{a}|| < \delta$. Hence if $n, m \geq N$ then both \mathbf{x}_n and \mathbf{x}_m are in $B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}$ and so by the Cauchy criterion $||f(\mathbf{x}_n) - f(\mathbf{x}_m)|| < \epsilon$. Therefore, $f(\mathbf{x}_n)$ is a Cauchy sequence and hence convergent, call the limit L.

It remains to show that all such sequences $f(\mathbf{x}_n)$ converge to L, and not to something else. Suppose that for some Cauchy sequence \mathbf{y}_n in the domain of f, $\mathbf{y}_n \to \mathbf{a}, \mathbf{y}_n \neq \mathbf{a}$ for all n, and that $f(\mathbf{y}_n) \to M$. We will show that M = L. Given $\epsilon > 0$, let $\delta > 0$ be such that if $\mathbf{x}, \mathbf{x}' \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}$, then $||f(\mathbf{x}) - f(\mathbf{x}')|| < \epsilon/3$, and let \mathbf{x}_n be the sequence defined in the previous paragraph. Then since $\mathbf{x}_n \to \mathbf{a}$ and $\mathbf{y}_n \to \mathbf{a}$, there is an N such that if $n \geq N$ then $\mathbf{x}_n, \mathbf{y}_n \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}$, $||f(\mathbf{x}_n) - L|| < \epsilon/3$, and $||f(\mathbf{y}_n) - M|| < \epsilon/3$. Therefore

$$||L - M|| \le ||L - f(\mathbf{x}_n)|| + ||f(\mathbf{x}_n) - f(\mathbf{y}_n)|| + ||f(\mathbf{y}_n) - M|| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$

Since $\epsilon > 0$ was arbitrary, L = M.

An alternative way to prove this last part is to note that given $\epsilon > 0$ we can choose $\delta > 0$ such that if $\mathbf{x}, \mathbf{x}' \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}$, then $||f(\mathbf{x}) - f(\mathbf{x}')|| < \epsilon/2$. Since $\mathbf{x}_n \to \mathbf{a}$ and $f(\mathbf{x}_n) \to L$, there is an N such that if $n \ge N$ then $||f(\mathbf{x}_n) - L|| < \epsilon/2$, and $\mathbf{x}_n \in B(\mathbf{a}, \delta) \setminus \{\mathbf{a}\}$. Therefore, if $\mathbf{x} \in B(\mathbf{a}, \delta)$ then

$$||f(\mathbf{x}) - L|| \le ||f(\mathbf{x}) - f(\mathbf{x}_n)|| + ||f(\mathbf{x}_n) - L|| < \epsilon/2 + \epsilon/2 = \epsilon.$$

Therefore, $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$.