MATH 316 - HOMEWORK 4 - SOLUTIONS

Exercise 8.26.

Solution:

 (\Longrightarrow) Suppose that S is open. We will show that $S = S^{\circ}$. By definition, $S^{\circ} \subseteq S$ so it remains only to show that $S \subseteq S^{\circ}$. Let $x \in S$. Since S is open there is an r > 0 such that $B(x, r) \subseteq S$. But this is exactly what it means for x to be an element of S° . Hence $x \in S^{\circ}$, $S \subseteq S^{\circ}$, and $S = S^{\circ}$.

(\Leftarrow) Suppose $S = S^{\circ}$. We must show that S is open. Let $x \in S$. Then $x \in S^{\circ}$ so there exists r > 0 such that $B(x, r) \subseteq S$. Therefore, S is open.

Exercise 8.31.

Solution:

In order to show that \mathbf{Q}^n is dense in \mathbf{E}^n , we must show that $\overline{\mathbf{Q}^n} = \mathbf{E}^n$. Since \mathbf{E}^n is the whole universe, $\overline{\mathbf{Q}^n} \subseteq \mathbf{E}^n$. We must show the opposite inclusion. Let $\mathbf{x} \in \mathbf{E}^n$. We must show that \mathbf{x} is a cluster point of \mathbf{Q}^n . Let $\epsilon > 0$, and suppose $\mathbf{x} = (x_1, x_2, \ldots, x_n)$. By the density of \mathbf{Q} in \mathbf{R} , for each j, there is an $r_j \in \mathbf{Q}$ such that $x_j < r_j < x_j + \epsilon/\sqrt{n}$, so that $0 < |x_j - r_j| < \epsilon/\sqrt{n}$. Let $\mathbf{r} = (r_1, r_2, \ldots, r_n)$. Then clearly $\mathbf{x} \neq \mathbf{r}$ so

$$0 < \|\mathbf{x} - \mathbf{r}\| = \left(\sum_{j=1}^{n} |x_j - r_j|^2\right)^{1/2} < \left(\sum_{j=1}^{n} \frac{\epsilon^2}{n}\right)^{1/2} = \epsilon.$$

Hence **x** is a limit point of \mathbf{Q}^n , so that $\mathbf{E}^n \subseteq \overline{\mathbf{Q}^n}$ and hence $\mathbf{E}^n = \overline{\mathbf{Q}^n}$.