
MATH 316 – HOMEWORK 1 – SOLUTIONS

Exercise 5.7.

Solution:

(a) We must show that for every ε > 0 there is a δ > 0 such that whenever
|x1 − x2| < δ, |f(x1) − f(x2)| < ε. Let ε > 0 and choose δ = ε/r. If |x1 − x2| <
δ = ε/r, r|x1 − x2| < ε. But by hypothesis, |f(x1)− f(x2)| ≤ r|x1 − x2| < ε.

(b) This can be done formally by induction. If n = 1 then |x2 − x1| = |f(x1) −
f(x0)| ≤ r|x1 − x0| as required. Let n be given and suppose that |xn+1 − xn| ≤
rn|x1 − x0|. We must show that |xn+2 − xn+1| ≤ rn+1|x1 − x0|. By definition,

|xn+2−xn+1| = |f(xn+1)− f(xn)| ≤ r|xn+1−xn| ≤ r · rn|x1−x0| = rn+1|x1−x0|

as required.

(c) We must show that given ε > 0 there is an N such that if n, m ≥ N then
|xn−xm| < ε. First of all, we can assume with out loss of generality that x1 6= x0
because if x1 = x0 then for all n, xn+1 = xn and the sequence is constant, which
is of course Cauchy. Assuming without loss of generality that n > m, we can
write

|xn − xm| =
∣∣∣∣ n−1∑
j=m

(xj+1 − xj)
∣∣∣∣

≤
n−1∑
j=m

|xj+1 − xj|

≤ |x1 − x0|
n−1∑
j=m

rj

= rm |x1 − x0|
n−m−1∑
j=0

rj

≤ rm |x1 − x0|
∞∑
j=0

rj

= rm
|x1 − x0|

1− r
.

Given ε > 0, choose N so large that if m ≥ N then rm < ε ((1 − r)/|x1 − x0|).
This can be done since rm → 0 as m → ∞. Therefore, if n, m ≥ N then in
particular m ≥ N so that by the above calculation, |xn − xm| < ε as required.

(d) Since the sequence xn is Cauchy it converges so let p = limxn. Since f is
continuous on R, f(p) = lim f(xn) = lim xn+1 = p. If it is not clear to you that
limxn+1 = limxn you should show it by going to the definition of limit.



(e) Suppose that f(p) = f(q). By our assumption on f , |p− q| = |f(p)− f(q)| <
r|p− q|. If p 6= q, we can divide both sides of the inequality by |p− q| and obtain
1 < r contradicting our assumption that r < 1. Therefore, p = q.

2. Exercise 5.8.

Solution:

(a). Assume that L > 0. Since lim(xn/yn) = L > 0, there is an N such that
if n ≥ N then |(xn/yn) − L| < L/2. This implies that L/2 < |xn/yn| < 3L/2
(just apply the definition of |a| < b), or that (L/2)|yn| < |xn| < (3L/2)|yn|.
If y is summable, then since yk > 0, |yk| is summable and by Exercise 5.6(b),
(3L/2)|yn| is summable. By Theorem 5.2.1, |xk| = xk is also summable. If
x is summable, then since xk > 0, |xk| is summable and by Exercise 5.6(b),
(2/L)|yn| is summable. Since |yk| ≤ (2/L)|xk|, by Theorem 5.2.1, |yk| = yk is
also summable.

(b). Assume that L ≥ 0. If L > 0 then part (a) implies that if y is summable
then x is summable. If L = 0, then there is an N such that if n ≥ N then
|xn/yn| < 1, or |xn| < |yn|. Since both xk and yk are non-negative, 0 ≤ xk ≤ yk
for all k ≥ N . By Theorem 5.2.1, if y is summable then x is summable.


