10.5 Implicit Functions.

A. Examples.

1. Consider the equation $x^2 + y^2 = 1$. Does there exist a function g(x) such that for all $x \in$ $[-1,1], x^2 + g(x)^2 = 1$? In other words, can we solve this equation for y in terms of x?

Answer: Clearly no in general, but we can say the following: Given a point (x_0, y_0) on the curve for which $\frac{dy}{dx} = -\frac{x}{y}$ is defined (that is, if $y_0 \neq 0$), there is a small open interval (a, b)containing x_0 such that such a g(x) exists for $x \in (a, b)$. Also note that if $y_0 = 0$ then no such interval or function exists. 2. Suppose we have a curve in the plane given by f(x, y) = 0.

$$\frac{dy}{dx} = \frac{-\frac{\partial f}{\partial x}}{\left|\frac{\partial f}{\partial y}\right|}$$

so the curve has a nonvertical tangent exactly when $\frac{\partial f}{\partial y} \neq 0$ and we should be able to solve for y in terms of x. But how?

3. Define $F: \mathbb{E}^2 \to \mathbb{E}^2$ by F(x, y) = (x, f(x, y)).

B. <u>Theorem</u> (10.5.1) Suppose $f \in C^1(D, \mathbb{E}^m)$ where D is an open subset of \mathbb{E}^{n+m} and that for some point $(x_0, y_0) \in D$, $f(x_0, y_0) = \mathbb{O}$ and $\frac{\partial(f_1, \dots, f_m)}{\partial(y_1, \dots, y_m)} (x_0, y_0) \neq 0$

Then there is an open set $U \subseteq \mathbb{E}^n$ containing \mathbb{X}_0 and a function $\mathbb{g} \in \mathcal{C}^1(U, \mathbb{E}^m)$ such that for all $\mathbb{x} \in U$, $\mathbb{f}(\mathbb{x}, \mathbb{g}(\mathbb{x})) = \mathbb{O}$.

4. <u>Example</u>. $f: \mathbb{E}^2 \to \mathbb{E}^2$ given by $f(x, y) = (x^2 + y^2, x + y)$

5. <u>Definition</u>. (Local invertibility) A function $f: \mathbb{E}^n \to \mathbb{E}^n$ is *locally one-to-one* in an open set *V* if for every $\mathbb{X}_0 \in V$, there is an $\epsilon > 0$ such that f restricted to $B(\mathbf{x}_0, \epsilon)$ is one-to-one. If f is one-to-one on a set *E* then we say f is *globally one-to-one* on *E*.

6. <u>Example</u>. Let $f(x, y) = (x \cos y, x \sin y)$ be defined on the open set $V = \{(x, y): x > 0\}$. Then f is locally 1 - 1 on V but not globally 1 - 1 on V.

C. The Jacobian.

- 1. <u>Definition</u>. Suppose that $f: D \subseteq \mathbb{E}^n \to \mathbb{E}^n$ is in $C^1(D, \mathbb{E}^n)$. Then the *Jacobian* of f at $x \in D$ is given by det(f'(x)).
- 2. <u>Theorem</u>. Suppose that $f: D \subseteq \mathbb{E}^n \to \mathbb{E}^n$, *D* an open subset of \mathbb{E}^n , is in $C^1(D, \mathbb{E}^n)$, and suppose that $\det(f'(\mathbb{X})) \neq 0$ for all $\mathbb{X} \in D$. Then f is locally one-to-one in *D*.

D. Inverse Function Theorem.

1. Lemma. (Open Mapping Theorem, Thm. 10.4.2). Suppose $f \in C^1(D, \mathbb{E}^n)$ where $D \subseteq \mathbb{E}^n$ is open. If $det(f'(x)) \neq 0$ for all $x \in D$, then f is an open mapping, that is, f maps open subsets of D to open subsets of \mathbb{E}^n .

2. <u>Theorem</u> (10.4.3). Suppose $f \in C^1(D, \mathbb{E}^n)$ where $D \subseteq \mathbb{E}^n$ is open. If $det(f'(x)) \neq 0$ for all $\mathbb{X} \in D$, and if f is globally one-to-one on D, then $f^{-1} \in C^1(f(D), \mathbb{E}^n)$ and $(f^{-1})'(f(\mathbb{X})) = (f'(x))^{-1}$