- 10.4 Inverse Functions.
 - A. Local Invertibility.
 - 1. Example. Let $f(x) = x^2$. For any $x_0 \in (0, \infty)$ there is an open interval around x_0 such that f restricted to that interval is injective. Similarly for any $x_0 \in (-\infty, 0)$. However f is not injective on any open interval containing f.

- 2. Remark. Suppose $f:(a,b) \to \mathbb{R}$ is C^1 on (a,b) and that for some $c \in (a,b)$, $f'(c) \neq 0$. Then the following conclusions hold:
 - a. $f'(x) \neq 0$ on some interval $(c \delta, c + \delta)$.
 - b. f(x) is monotone on this interval, hence invertible.
 - c. f^{-1} is also C^{1} on some open interval around f(c), and $(f^{-1})'(y) = 1/f'(f^{-1}(y))$ for y in this interval.

3. Example. $f: \mathbb{E}^2 \to \mathbb{E}^2$ given by $f(x,y) = (x^2 + y^2, x + y)$

- 4. <u>Definition</u>. (Local invertibility) A function $f: \mathbb{E}^n \to \mathbb{E}^n$ is *locally one-to-one* in an open set V if for every $\mathbb{x}_0 \in V$, there is an $\epsilon > 0$ such that f restricted to $B(\mathbb{x}_0, \epsilon)$ is one-to-one. If f is one-to-one on a set F then we say f is *globally one-to-one* on F.
- 5. Example. Let $f(x,y) = (x \cos y, x \sin y)$ be defined on the open set $V = \{(x,y): x > 0\}$. Then f is locally 1 1 on V but not globally 1 1 on V.

B. The Jacobian.

- 1. <u>Definition</u>. Suppose that $f: D \subseteq \mathbb{E}^n \to \mathbb{E}^n$ is in $C^1(D, \mathbb{E}^n)$. Then the *Jacobian* of f at $x \in D$ is given by $\det \mathbb{E}^r(x)$.
- 2. Theorem. Suppose that $f: D \subseteq \mathbb{E}^n \to \mathbb{E}^n$, D an open subset of \mathbb{E}^n , is in $C^1(D, \mathbb{E}^n)$, and suppose that $\det \mathbb{E}^r(\mathbb{X}) \neq 0$ for all $\mathbb{X} \in D$. Then f is locally one-to-one in D.

- C. Inverse Function Theorem.
 - 1. <u>Lemma</u>. (Open Mapping Theorem, Thm. 10.4.2). Suppose $f \in C^1(D, \mathbb{E}^n)$ where $D \subseteq \mathbb{E}^n$ is open. If $\det \mathcal{F}'(x) \neq 0$ for all $x \in D$, then f is an open mapping, that is, f maps open subsets of D to open subsets of \mathbb{E}^n .

2. Theorem (10.4.3). Suppose $f \in C^1(D, \mathbb{E}^n)$ where $D \subseteq \mathbb{E}^n$ is open. If $\det(f'(x)) \neq 0$ for all $x \in D$, and if f is globally one-to-one on D, then $f^{-1} \in C^1(f(D), \mathbb{E}^n)$ and $(f^{-1})'(f(x)) = (f'(x))^{-1}$