10.3 The Chain Rule.

A. The Product Rule (Section 10.2).

- 1. <u>Theorem</u>. Let $f, g: D \subseteq \mathbb{E}^n \to \mathbb{E}^m$ be differentiable at $x_0 \in D$. Then $(f \cdot g)'(x_0) = f(x_0)g'(x_0) + g(x_0)f'(x_0)$
- 2. <u>Remark</u>. How do we interpret this formula in terms of linear transformations?

3. Proof of Theorem:

- B. The Chain Rule.
 - 1. <u>Theorem</u>. Suppose that $g: D \subseteq \mathbb{E}^n \to \mathbb{E}^m$ and $f: V \subseteq \mathbb{E}^m \to \mathbb{E}^p$, where *D* is an open subset of \mathbb{E}^n and *V* is an open subset of \mathbb{E}^m such that $g(D) \subseteq V$, and that $g'(x_0)$ and $f'(g(x_0))$ both exist at $x_0 \in D$. Then $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$
 - 2. <u>Remark</u>. How do we interpret this theorem in terms of linear transformations?

3. Proof of Theorem.

C. The Mean Value Theorem.

1. <u>Theorem</u>. Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then there is a $c \in (a,b)$ such that f(b) - f(a) = f'(c)(b - a).

2. <u>Remark</u>. A natural generalization to functions $f: D \subseteq \mathbb{E}^n \to \mathbb{E}^m$ might be: Suppose that $f: V \to \mathbb{E}^m$ where *V* is a ball in \mathbb{E}^n . Then given $a, b \in V$ there is a c on the line segment joining a and b such that f(b) - f(a) = f'(c)(b - a).

3. Note first of all that the dimensions of the matrices work out, but the theorem does not hold.

4. For f as above, consider the function g: $\mathbb{R} \to \mathbb{E}^m$ given by $g(t) = t\mathbb{b} + (1 - t)\mathbb{a}$. Then look at the function $f \circ g: \mathbb{R} \to \mathbb{E}^m$. What can we say in this case?

5. <u>Theorem</u>. (MVT 1) Let $V \subseteq \mathbb{E}^n$ be open and convex, and let $f: V \to \mathbb{E}^m$ be differentiable on *V*. Let $a, b \in V$ and let $u \in \mathbb{E}^m$ be an arbitrary vector. Then there is a c on the line segment joining a and b such that

$$\mathbf{u} \cdot (\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})) = \mathbf{u} \cdot (\mathbf{f}'(\mathbf{c})(\mathbf{b} - \mathbf{a}))$$

6. <u>Example</u>. Let f(x, y) = x(y - 1). Then f(1,1) - f(0,0) = 0, and $\nabla f(x, y)$ does not vanish on the line segment joining (0,0) and (1,1).

7. Proof of MVT 1.

8. <u>Theorem</u>. (MVT 2) Under the hypotheses of the previous theorem, there exist vectors $\mathbb{C}_1, \mathbb{C}_2, \dots, \mathbb{C}_m \in V \subseteq \mathbb{E}^n$ such that $f(\mathbb{b}) - f(\mathbb{a}) = \left[\frac{\partial f_i}{\partial x_j}(\mathbb{C}_j)\right](\mathbb{b} - \mathbb{a})$