
10.2  Differentiable Functions. 
 

A.  The derivative. 
 

1.  Motivation.  (a)  Recall that a function 𝑓: 𝔼1 →
𝔼1 is differentiable at 𝑥0 in its domain, with 
derivative 𝑓 ′ (𝑥0) if  

lim
ℎ→0

𝑓 𝑥0 + ℎ − 𝑓(𝑥0)

ℎ
= 𝑓 ′ (𝑥0) 

Rewriting this in terms of the definition of the 
limit gives:  For every 𝜖 > 0 there is a 𝛿 > 0 

such that if  ℎ < 𝛿 then  

 
𝑓 𝑥0 + ℎ − 𝑓(𝑥0)

ℎ
−  𝑓 ′ (𝑥0) < 𝜖 

or, rewriting again 
 𝑓 𝑥0 + ℎ − 𝑓 𝑥0 −  𝑓 ′ 𝑥0 ℎ < 𝜖ℎ 

 
(b)  If we define the linear transformation 

𝐴 ∈ ℒ 𝔼1, 𝔼1  by 𝐴(ℎ) = 𝑓 ′ 𝑥0 ℎ for all ℎ ∈ 𝔼1,  
Then we can rewrite above as 

 𝑓 𝑥0 + ℎ − 𝑓 𝑥0 −  𝐴(ℎ) < 𝜖ℎ 
 
 
 
 
 
 
 
 
 



(c)  Now clearly, for any linear transformation 

𝐴 ∈ ℒ 𝔼1, 𝔼1 , or equivalently any number 𝑚, 
the quantity  𝑓 𝑥0 + ℎ − 𝑓 𝑥0 −  𝐴 ℎ  → 0 as 

ℎ → 0 (assuming 𝑓 is continuous at 𝑥0).  
However, the definition of differentiability says 
that in fact, 

 𝑓 𝑥0 + ℎ − 𝑓 𝑥0 −  𝐴 ℎ  

ℎ
→ 0 

or in other words that  𝑓 𝑥0 + ℎ − 𝑓 𝑥0 −
 𝐴 ℎ   goes to zero faster than ℎ.  There is only 
one transformation 𝐴 that satisfies this 
criterion. 
 
(d)  We conclude that (i) the derivative 𝑓 ′ (𝑥0) 
can be thought of as a linear transformation, (ii) 
this linear transformation has the property that 
the difference between it and 𝑓 𝑥0 + ℎ − 𝑓(𝑥0) 

goes to zero faster than ℎ goes to zero, and (iii) 
it is the only linear transformation that does so. 
 
 
 
 
 
 
 
 
 
 
 
 



2.  Definition.  Let 𝕗: 𝐷 → 𝔼𝑚  for some 𝐷 ⊆ 𝔼𝑛  and 

let 𝕩 ∈ 𝐷 be a cluster point of 𝐷.  Then 𝕗 is 

differentiable at 𝕩 with derivative 𝕗′ 𝕩 ∈
ℒ(𝔼𝑛 , 𝔼𝑚 ) if 

lim
𝕙→𝕠

 𝕗 𝕩 + 𝕙 − 𝕗 𝕩 − 𝕗′ 𝕩 (𝕙) 

 𝕙 
= 0 

 
3. Theorem. (10.2.2)  If 𝕗 is differentiable at 

𝕩0 ∈ 𝐷 then 𝕗 is continuous at 𝕩0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



B.  Computing 𝕗′ (𝕩).   
 
1.  Remark.  (a)  If 𝕗′ 𝕩 ∈ ℒ(𝔼𝑛 , 𝔼𝑚 ) then it has a 

representation as a 𝑚 × 𝑛 matrix with respect 
to the standard basis.  What is that matrix? 
 

(b)  Consider first a function 𝕗: 𝔼𝑛 → 𝔼1, that is 
a real-valued function of 𝑛 variables.  Let us 

write 𝕗 𝕩 =  𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 .  In this case, for a 

given 𝕩0 = (𝑥1
0, 𝑥2

0, … , 𝑥𝑛
0), 𝕗′ (𝕩0) is a linear 

transformation from 𝔼𝑛  to 𝔼1 and hence can be 
written as  

𝕗′ 𝕩0 𝕙 =  𝕒 ⋅ 𝕙 

for 𝕙 ∈ 𝔼𝑛 .  And we have 

lim
𝕙→𝕠

 𝕗 𝕩0 + 𝕙 − 𝕗 𝕩0 − 𝕒 ⋅ 𝕙 

 𝕙 
= 0 

 
(c)  Since the limit exists, we can approach 
zero from any direction.  By letting 𝕙 = ℎ𝕖𝑖 , we 

get 𝕒 ⋅ 𝕙 = 𝑎𝑖 , and writing the above limit in 
components we get 

lim
ℎ→0

𝑓 𝑥1
0, … , 𝑥𝑗

0 + ℎ, … , 𝑥𝑛
0 − 𝑓 𝑥1

0, … , 𝑥𝑛
0 

ℎ
=  𝑎𝑖  

But this is just the usual definition of the partial 
derivative.  So we conclude 

𝕒 =  
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
 =  ∇𝑓(𝕩0) 

 
 
 



2.  Theorem (10.2.3)  Let 𝕗: 𝐷 → 𝔼𝑚 ,  𝐷 an open 

subset of 𝔼𝑛 , be differentiable at 𝕩 ∈ 𝐷.  Then 
the matrix of 𝕗′ (𝕩) with respect to the standard 
basis is given by 

𝕗′ 𝕩 =   
𝜕𝑓𝑖

𝜕𝑥𝑗
 
𝑚×𝑛

 

Moreover, for any 𝕧 ∈ 𝔼𝑛 ,  

𝕗′ 𝕩 𝕧 =  lim
𝑡→0

𝕗 𝕩 + 𝑡𝕧 − 𝕗(𝕩)

𝑡
 

which is defined as the directional derivative of 
𝕗 in the direction 𝕧 at 𝕩. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.  Remark.  (a)  Differentiability of 𝕗 at 𝕩 implies 

that all of the partial derivatives of 𝕗 exist at 𝕩.  
However, the existence of all partial derivatives 
at 𝕩 does not guarantee that 𝕗 is differentiable 

at 𝕩.  This is in contrast to the case of real-
valued functions of a single variable. 
 
(b)  However, if all of the partials of 𝕗 are 
continuous then the story is different. 
 

4. Theorem (10.2.3)  Let 𝕗: 𝐷 → 𝔼𝑚 ,  𝐷 an open 

subset of 𝔼𝑛 .  Then 𝕗 ∈ 𝐶1(𝐷, 𝔼𝑛), that is, 

considering 𝕗′ is continuous as a function 
𝕗′ : 𝐷 → ℒ(𝔼𝑚 , 𝔼𝑛) between two normed linear 
spaces, if and only if every partial derivative of 
𝕗 is continuous on 𝐷. 

 
 
 


