- 10.1 Linear Transformations and Norms.
 - A. Brief review of linear algebra.
 - 1. <u>Definition</u>. A *linear transformation* $L: \mathbb{E}^n \to \mathbb{E}^m$ is a function with the property that for every $x, y \in \mathbb{E}^n$, and scalars α, β ,

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y).$$

We denote the collection of all such linear transformations by $\mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$.

2. <u>Definition</u>. A *basis*, \mathcal{B} in \mathbb{E}^n is a collection of vectors $\mathcal{B} = \{\mathbb{b}_1, \mathbb{b}_2, ..., \mathbb{b}_n\}$ that is linearly independent. If \mathcal{B} is a basis then every vector $\mathbf{x} \in \mathbb{E}^n$ can be written uniquely as

$$x = \sum_{j=1}^{n} \alpha_j \, \mathbb{b}_j$$

where the coefficients $\alpha_j = \mathbb{X} \cdot \mathbb{V}_j$ where $\{\mathbb{V}_j\}_{j=1}^n$ is the unique collection of vectors *biorthogonal* to \mathcal{B} , that is, such that $\mathbb{D}_j \cdot \mathbb{V}_k = 1$ if j = k and 0 otherwise.

A basis \mathcal{B} is *orthonormal* if $\mathbb{b}_j = \mathbb{v}_j$ for all j.

- 3. Remark. (a) $L: \mathbb{E}^1 \to \mathbb{E}^1$ is linear if and only if $L(x) = \alpha x$ for some real number α .
 - (b) $L: \mathbb{E}^1 \to \mathbb{E}^m$ is linear if and only if $L(x) = (\alpha_1 x, \alpha_2 x, ..., \alpha_m x) = \mathbb{a} x$ for some fixed $\mathbb{a} \in \mathbb{E}^m$.
 - (c) $L: \mathbb{E}^n \to \mathbb{E}^1$ is linear if and only if $L(\mathbb{x}) = \mathbb{a} \cdot \mathbb{x} = \sum_{j=1}^n \alpha_j \ x_j$. In this case, $\alpha_j = L(\mathbb{e}_j)$ where $\mathbb{e}_j = (0, ..., 0, 1, 0, ..., 0)$ is the j^{th} element of the standard basis $\{\mathbb{e}_j\}_{j=1}^n$.

4. Theorem. Every linear transformation $L: \mathbb{E}^n \to \mathbb{E}^m$ can be represented as an $m \times n$ matrix.

- B. The operator norm.
 - 1. <u>Definition</u>. The *operator norm* (or just the *norm*) of $L \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$ is defined by $||L|| = \inf\{\mathcal{L} > 0: ||Lx|| \le C ||x|| \text{ for all } x \in \mathbb{E}^n\}$ or by

$$||L|| = \left\{ \sup_{|C| \in \mathbb{R}} ||Lx|| : x \in \mathbb{E}^n \right\}$$

- 2. Remark. (a) $||Lx|| \le C||x||$ for all $x \in \mathbb{E}^n$ says that the transformation L magnifies the norm of a given $x \in \mathbb{E}^n$ by a factor of no more than C. The norm ||L|| is the smallest such factor.
 - (b) The two quantities appearing in the definition of operator norm are the same. The proof of this is an exercise, but some of your work is done in Exercise 10.1.
 - (c) Given $L \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$, ||L|| is always finite, and in fact if L is represented by the matrix $[L] = (l_{i,j})_{m \times n}$ then

$$||L|| \le \left(\sum_{i=1}^{m} \sum_{j=1}^{n} l_{i,j}^{2}\right)^{1/2}$$

however, usually strict inequality holds.

(d) In fact, ||L|| is independent of the matrix representation of L. Also $\det(L) = \det[L]$ is also independent of the matrix that is used to represent L.