<u>Corollary</u>. Under the hypotheses of the Theorem, the forward image of a relatively open set in D is open in \mathbb{E}^m .

- 10.1 Linear Transformations and Norms.
 - A. Brief review of linear algebra.
 - 1. <u>Definition</u>. A *linear transformation* $L: \mathbb{E}^n \to \mathbb{E}^m$ is a function with the property that for every \mathbb{X} , $\mathbb{Y} \in \mathbb{E}^n$, and scalars α, β , $L(\alpha \mathbb{X} + \beta \mathbb{Y}) = \alpha L(\mathbb{X}) + \beta L(\mathbb{Y})$. We denote the collection of all such linear transformations by $\mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$.
 - 2. <u>Definition</u>. A *basis*, \mathcal{B} in \mathbb{E}^n is a collection of vectors $\mathcal{B} = \{\mathbb{b}_1, \mathbb{b}_2, ..., \mathbb{b}_n\}$ that is linearly independent. If \mathcal{B} is a basis then every vector $\mathbf{x} \in \mathbb{E}^n$ can be written uniquely as

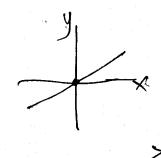
$$x = \sum_{j=1}^{n} \alpha_j \, \mathbb{b}_j$$

where the coefficients $\alpha_j = \mathbb{X} \cdot \mathbb{V}_j$ where $\{\mathbb{V}_j\}_{j=1}^n$ is the unique collection of vectors *biorthogonal* to \mathcal{B} , that is, such that $\mathbb{b}_j \cdot \mathbb{V}_k = 1$ if j = k and 0 otherwise.

A basis \mathcal{B} is *orthonormal* if $\mathbb{b}_j = \mathbb{v}_j$ for all j.

$$B = \begin{bmatrix} 1 & 1 & 1 \\ b_1 & b_2 & \cdots & b_n \end{bmatrix} \quad V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 &$$



- 3. Remark. (a) $L: \mathbb{E}^1 \to \mathbb{E}^1$ is linear if and only if $L(x) = \alpha x$ for some real number α .
 - (b) $L: \mathbb{E}^1 \to \mathbb{E}^m$ is linear if and only if L(x) = $(\alpha_1 x, \alpha_2 x, ..., \alpha_m x) = \underset{\mathbf{x}}{\mathbb{a}} x \text{ for some fixed } \mathbf{a} \in$

direction à

Lower (c) $L: \mathbb{E}^n \to \mathbb{E}^1$ is linear if and only if $L(\mathbb{X}) = \mathbb{A}$ a parametrized $\mathbb{X} = \sum_{j=1}^n \alpha_j x_j$. In this case, $\alpha_j = L(\mathbb{e}_j)$ where $\mathbb{e}_j = (0, ..., 0, 1, 0, ..., 0)$ is the j^{th} element of the standard basis $\{e_i\}_{i=1}^n$.

standard basis
$$\{e_j\}_{j=1}^n$$
.

 $\vec{e}_j = (o_1 \dots o_1)_1 c_1 \dots c_n = E^n$
 $\vec{f}_j = (o_1 \dots o_1)_1 c_1 \dots c_n = E^n$
 $\vec{f}_j = (o_1 \dots o_1)_1 c_1 \dots c_n = E^n$
 $\vec{f}_j = (o_1 \dots o_1)_1 c_1 \dots c_n = E^n$
 $\vec{f}_j = (o_1 \dots o_n)_1 c_n = \sum_{j=1}^n x_j L(\vec{e}_j)$
 $\vec{f}_j = (x_1, \dots, x_n)$
 $\vec{f}_j = (x_1, \dots, x_n)$

4. Theorem. Every linear transformation $L: \mathbb{E}^n \to \mathbb{E}^m$ can be represented as an $m \times n$ matrix.

matrix.

Let
$$B = \{\vec{b}_{1}, ..., \vec{b}_{n}\}$$
 be a barin for E^{n} and $C = \{\vec{c}_{1}, ..., \vec{c}_{n}\}$ a besis for E^{m} .

Given $\vec{x} \in E^{n}$, $\vec{x} = \sum_{j=1}^{n} x_{j}^{*} \vec{b}_{j}$.

Cooling $L(\vec{x}) = L(\vec{x}) = L(\sum_{j=1}^{n} x_{j}^{*} \vec{b}_{j})$

$$L(x) = \sum_{j=1}^{N} x_j L(b_j)$$

$$L(x_j) = \sum_{j=1}^{N} x_j L(b_j)$$

$$L(b_j) = \sum_{j=1}^{N} x_j L(b_j)$$

1. L(ti) = Stik Ce

North

$$L(x) = \sum_{j=1}^{m} \sum_{k=1}^{m} t_{j,k} x_{j} c_{k} = \sum_{k=1}^{m} \sum_{j=1}^{n} t_{j,k} x_{j} c_{k}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} t_{11} t_{21} t_{31} - t_{n1} \\ t_{12} t_{22} - t_{n2} \\ \vdots \\ t_{1m} - - t_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Green LER(En, Em) Hen JC solth || L×II € C ||×II € n

- B. The operator norm.
 - 1. <u>Definition</u>. The *operator norm* (or just the *norm*) of $L \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$ is defined by $||L|| = \inf\{C > 0: ||Lx|| \le C ||x|| \text{ for all } x \in \mathbb{E}^n\}$ or by

$$||L|| = \left\{ \sup_{\underline{||X||}} ||Lx|| : x \in \mathbb{E}^n \right\}$$

- 2. Remark. (a) $||Lx|| \le C||x||$ for all $x \in \mathbb{E}^n$ says that the transformation L magnifies the norm of a given $x \in \mathbb{E}^n$ by a factor of no more than C. The norm ||L|| is the smallest such factor.
 - (b) The two quantities appearing in the definition of operator norm are the same. The proof of this is an exercise, but some of your work is done in Exercise 10.1.
 - (c) Given $L \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$, ||L|| is always finite, and in fact if L is represented by the matrix $[L] = (l_{i,j})_{m \times n}$ then

$$||L|| \le \left(\sum_{i=1}^{m} \sum_{j=1}^{n} l_{i,j}^{2}\right)^{1/2}$$

however, usually strict inequality holds.

(d) In fact, ||L|| is independent of the matrix representation of L. Also $\det(L) = \det[L]$ is also independent of the matrix that is used to represent L.

 $f(x^{1},...,x^{n}) = \begin{cases} f^{n}(x^{1},...,x^{n}) \\ \vdots \\ f^{n}(x^{n},...,x^{n}) \end{cases}$ $f_i: \mathbb{E}^n \to \mathbb{R} = \mathbb{E}^1$ 6: What is f!?

f: 12 > 12. | f(x) = (m + (x) - f(x))

h > 0 $y = f(x) + f(x)(x-x_0)$ best straight-(we approx to f(x))
at x=x_0. lim | f(x+4)-f(x) - f(x) | =0 1(m (f (xoth)-f(xo)-f(xo)h) =0 y= f(x)+m(x-xo) \$ 4200 7800 st. INKS then [f(x0+h)-f(x)-f(x)h]< [h]. For any MER If(x+4)-f(x)-mhl->0 as h->0. But for a unique mg If (seth) -fix) - mohl - 20 faster than h.

meaning If (sath)-f(sa)-mohl What is mo? f(x). we say (f(x+4)-f(x)-f(x)h)=o(lhl)
as h >0. $F(x) = o(G(x)) \text{ as } x \to 0$ $| \text{means} \quad F(x) \to o \text{ as } x \to 0$ $| G(x) = o(G(x)) \text{ as } x \to 0$ 1F(X) = O(G(X)) as X >0 (means F(x) is bounded as x >0 The American American

and the second of the second o

F(X) SCG(X) +X Small.

10.2 Differentiable Functions.

A. The derivative.

1. <u>Motivation</u>. (a) Recall that a function $f: \mathbb{E}^1 \to \mathbb{E}^1$ is differentiable at x_0 in its domain, with derivative $f'(x_0)$ if

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

Rewriting this in terms of the definition of the limit gives: For every $\epsilon>0$ there is a $\delta>0$ such that if $|h|<\delta$ then

$$\left|\frac{f(x_0+h)-f(x_0)}{h}-f'(x_0)\right|<\epsilon$$

or, rewriting again

$$|f(x_0+h)-f(x_0)-f'(x_0)h| < \epsilon h$$

(b) If we define the linear transformation $A \in \mathcal{L}(\mathbb{E}^1, \mathbb{E}^1)$ by $A(h) = f'(x_0)h$ for all $h \in \mathbb{E}^1$, Then we can rewrite above as

$$|f(x_0 + h) - f(x_0) - A(h)| < dh$$

(c) Now clearly, for any linear transformation $A \in \mathcal{L}(\mathbb{E}^1, \mathbb{E}^1)$, or equivalently any number m, the quantity $|f(x_0+h)-f(x_0)-A(h)| \to 0$ as $h \to 0$ (assuming f is continuous at x_0). However, the definition of differentiability says that in fact,

$$\frac{|f(x_0 + h) - f(x_0) - A(h)|}{h} \to 0$$

or in other words that $|f(x_0 + h) - f(x_0)| - A(h)|$ goes to zero *faster than h*. There is only one transformation A that satisfies this criterion.

(d) We conclude that (i) the derivative $f'(x_0)$ can be thought of as a linear transformation, (ii) this linear transformation has the property that the difference between it and $f(x_0 + h) - f(x_0)$ goes to zero faster than h goes to zero, and (iii) it is the only linear transformation that does so.

- (usually we assume D'is open and $\tilde{x} \in D$.)
- 2. <u>Definition</u>. Let $f: D \to \mathbb{E}^m$ for some $D \subseteq \mathbb{E}^n$ and let $x \in D$ be a cluster point of D. Then f is differentiable at x with derivative $f'(x) \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$ if

 $\lim_{h\to 0} \frac{\|f(x+h) - f(x) - f'(x)(h)\|}{\|h\|} = 0$

3. Theorem. (10.2.2) If f is differentiable at $x_0 \in D$ then f is continuous at x_0 .

If: To show f is continuous at \hat{x} , we must show that $\lim_{x\to x} f(\hat{x}) = f(\hat{x})$, or $\lim_{x\to x} f(\hat{x}) - f(\hat{x})| = 0$.

But letting $\hat{h} = \hat{x} - \hat{x}$, we have $\lim_{x\to x} f(\hat{x}) - f(\hat{x})| = 1$ ($f(\hat{x}) + f(\hat{x}) - f(\hat{x})$) $\lim_{x\to x} f(\hat{x}) - f(\hat{x}) + \lim_{x\to x} f(\hat{x}) - f(\hat{x}) = 1$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x}) - f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x}) - f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x}) - f(\hat{x})\hat{h}||$ $\leq ||f(\hat{x} + \hat{h}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x}) - f(\hat{x}) - f(\hat{x})\hat{h}|| + ||f(\hat{x}) - f(\hat{x}) - f(\hat{x}$

B. Computing f'(x).

- 1. Remark. (a) If $f'(x) \in \mathcal{L}(\mathbb{E}^n, \mathbb{E}^m)$ then it has a representation as a $m \times n$ matrix with respect to the standard basis. What is that matrix?
 - (b) Consider first a function $f: \mathbb{E}^n \to \mathbb{E}^1$, that is a real-valued function of n variables. Let us write $f(x) = f(x_1, x_2, ..., x_n)$. In this case, for a given $x_0 = (x_1^0, x_2^0, ..., x_n^0)$, $f'(x_0)$ is a linear transformation from \mathbb{E}^n to \mathbb{E}^1 and hence can be written as

$$\begin{aligned} & \text{f}'(\mathbf{x}_0) \mathbb{h} = \mathbb{a} \cdot \mathbb{h} \\ & \text{for } \mathbb{h} \in \mathbb{E}^n. \text{ And we have} \\ & \lim_{\mathbb{h} \to 0} \frac{\| \mathbf{f}(\mathbf{x}_0 + \mathbb{h}) - \mathbf{f}(\mathbf{x}_0) - \mathbb{a} \cdot \mathbb{h} \|}{\| \mathbb{h} \|} = 0 \end{aligned}$$

(c) Since the limit exists, we can approach zero from any direction. By letting $\mathbb{h} = h \mathbb{e}_i$, we get $\mathbb{a} \cdot \mathbb{h} = a_i \mathbb{h}$ and writing the above limit in components we get

$$\lim_{h \to 0} \frac{f(x_1^0, \dots, x_j^0 + h, \dots, x_n^0) - f(x_1^0, \dots, x_n^0)}{h} = a_i$$

But this is just the usual definition of the partial derivative. So we conclude

$$\mathbf{a} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right) = \nabla f(\mathbf{x}_0)$$

$$a = (a_{11}a_{21} - a_{11})$$
 $a = ha_{i}$
 $he_{i} = (a_{11}a_{21} - a_{11})$ $a = ha_{i}$
 $he_{i} = (a_{11}a_{21} - a_{11})$
 $a = ha_{i}$
 $a = ha_{i}$

$$f: \mathbb{E}_{N} \to \mathbb{E}_{M}$$

$$f(x) = \begin{cases} f(x) - (x) \\ f(x) - (x) \end{cases}$$

$$L(x) = \begin{bmatrix} \overline{b}_1 & x \\ \overline{b}_2 & x \end{bmatrix} \quad \text{for } \overline{b}_i \in \mathbb{F}^N.$$

$$\left|\left(\begin{array}{c}
f_{1}(x_{0}+t_{1}) \\
f_{2}(x_{0}+t_{1})
\end{array}\right) - \left(\begin{array}{c}
f_{1}(x_{0}) \\
f_{2}(x_{0}) \\
f_{2}(x_{0}+t_{1})
\end{array}\right) - \left(\begin{array}{c}
f_{2}(x_{0}) \\
f_{2}(x_{0}) \\
f_{2}(x_{0})
\end{array}\right)$$

So must have.

$$|f_i(\vec{x}_0 + \vec{h}) - f_i(\vec{x}_0) - \vec{b}_i \cdot \vec{h}| \rightarrow 0$$
forter than
$$||\vec{h}||_{\mathcal{H}}$$
but $\vec{b}_i = \begin{bmatrix} \frac{\partial f_i}{\partial x_i} \\ \frac{\partial f_i}{\partial x_i} \\ \frac{\partial f_i}{\partial x_i} \end{bmatrix}$

2. Theorem (10.2.3) Let $f: D \to \mathbb{E}^m$, D an open subset of \mathbb{E}^n , be differentiable at $x \in D$. Then the matrix of $f^{'}(x)$ with respect to the standard basis is given by

$$\mathbf{f}'(\mathbf{x}) = \left[\frac{\partial f_i}{\partial x_j}\right]_{m \times n}$$

Moreover, for any $v \in \mathbb{E}^n$,

$$f^{'}(x)v = \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t}$$
 which is defined as the *directional derivative of*

f in the direction v at x.