14.2. Cauchy’s Integral Theorem.

A. Contours.

1. A simple closed path in \(\mathbb{C} \) is a curve \(z(t) \) that does not touch itself. Such a curve is sometimes called a contour. That is, \(z(t) = x(t) + iy(t) \).

2. A domain \(D \) is simply connected if every simple closed path in \(D \) encloses only points in \(D \). That is, \(D \) has no holes.

B. Cauchy’s Integral Theorem.

1. **Theorem 1.** If \(f(z) \) is analytic in a simply connected domain \(D \) and if \(C \) is a contour in \(D \) then \(\int_C f(z) \, dz = 0 \).

2. Note that Cauchy’s integral theorem is like independence of path, only with a twist.

\[
\int_C f(z) \, dz = \int_C (u + iv)(dx + idy) \\
= \int_C (u \, dx - v \, dy) + i \int_C (v \, dx - u \, dy) \\
= \int \int_R \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) \, dA + i \int \int_R \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) \, dA = 0
\]

by the C-R equations and Green’s Theorem.

C. Deformation of Path.

1. **Theorem 2.** If \(f(z) \) is analytic in a simply connected domain \(D \) then the integral of \(f \) is independent of path provided that the paths are all contained in \(D \).

2. If the endpoints of a path \(C \) are fixed, and if we can continuously deform \(C \) to another path \(C' \) with the same endpoints, then

\[
\int_C f(z) \, dz = \int_{C'} f(z) \, dz
\]

as long as all intermediate paths between \(C \) and \(C' \) contain only points where \(f(z) \) is analytic.

3. Given \(f(z) \) analytic in \(D \) and some \(z_0 \in D \), we can define for \(z \in D \),

\[
F(z) = \int_{z_0}^{z} f(z') \, dz'
\]

where the integral is taken over any path from \(z_0 \) to \(z \) that is contained in \(D \). Then \(F'(z) = f(z) \) and in particular, \(F(z) \) is analytic in \(D \).

4. If \(D \) is a doubly connected domain with boundary curves \(C_1 \) and \(C_2 \) and if \(f \) is analytic in a domain containing \(D \) and its boundary, then

\[
\int_{C_1} f(z) \, dz = \int_{C_2} f(z) \, dz.
\]