Exercise 10.7.4.
Solution:

\[
\iiint_T e^{-(x+y+z)} \, dV = \int_0^2 \int_{2-x}^{2-x-y} \int_0^{2-x-y} e^{-(x+y+z)} \, dz \, dy \, dx
\]
\[
= \int_0^2 \int_0^{2-x} -e^{-(x+y+z)} \big|_0^{2-x-y} \, dy \, dx
\]
\[
= \int_0^2 \int_0^{2-x} e^{-2} + e^{-(x+y)} \, dy \, dx
\]
\[
= \int_0^2 (x-2)e^{-2} - (e^{-(x+y)}) \big|_0^{2-x} \, dx
\]
\[
= \int_0^2 (x-3)e^{-2} + e^{-x} \, dx
\]
\[
= \frac{1}{2}(x-3)^2e^{-2} - e^{-x} \big|_0^2
\]
\[
= \frac{1}{2}e^{-2} - e^{-2} - \frac{9}{2}e^{-2} + 1 = -5e^{-2} + 1.
\]

Exercise 10.7.20.
Solution:

\[
\mathbf{F} = [3xy^2, yx^3 - y^3, 3zx^2]\] so that \(\text{div} \, \mathbf{F} = 3y^2 + x^2 - 3y^2 + 3x^2 = 4x^2\). Also, \(T\) is the cylinder of radius 5 and height 2. Therefore,

\[
\iiint_T \text{div} \, \mathbf{F} \, dV = \iiint_D \int_0^2 4x^2 \, dz \, dA
\]

where \(D\) is the disk of radius 5 centered at the origin. Switching to polar coordinates for the outside integral gives \(4x^2 = 4r^2 \cos^2 \theta\) and \(dA = r \, dr \, d\theta\). Hence we arrive at

\[
\iiint_D \int_0^2 4x^2 \, dz \, dA = \int_0^{2\pi} \int_0^5 \int_0^{2\pi} 4r^2 \cos^2 \theta \, dz \, dr \, d\theta
\]
\[
= 2 \int_0^{2\pi} \int_0^5 4r^3 \cos^2 \theta \, dr \, d\theta
\]
\[
= 2 \int_0^{2\pi} r^4 \cos^2 \theta \bigg|_0^5 \, d\theta
\]
\[
= 1250 \int_0^2 \cos^2 \theta \, d\theta
\]
\[
= 1250 \left(\frac{\theta}{2} + \frac{1}{2} \sin(2\theta) \right) \bigg|_0^{2\pi} = 1250\pi.
\]
Exercise 10.8.2.

Solution:

Theorem 1 says that \(\iint_S \frac{\partial f}{\partial n} \, dA = 0 \) if \(\nabla^2 f = 0 \). For \(f = y^2 - x^2 \), \(\nabla^2 f = 0 \), and \(\nabla f = [-2x, -2y, 0] \). A parametrization for the outside part of the cylinder is \(r(u, v) = [\cos u, \sin u, v] \), \(0 \leq u \leq 2\pi \), \(0 \leq v \leq 5 \). Computing \(r_u \times r_v \) gives \(r_u \times r_v = [\cos u, \sin u, 0] \) so that \(|r_u \times r_v| = 1 \). Finally, we have that \(\frac{\partial f}{\partial n} = \nabla f \cdot n = [-2 \cos u, -2 \sin u, 0] \cdot [\cos u, \sin u, 0] = 2(\sin^2 u - \cos^2 u) = 2 \cos(2u) \).

Therefore, with \(S' \) the outside surface of the cylinder,

\[
\iint_{S'} \frac{\partial f}{\partial n} \, dA = \int_0^{2\pi} \int_0^5 2 \cos(2u) \, dv \, du = 5 \int_0^{2\pi} 2 \cos(2u) \, du = 0.
\]

The top and bottom of the cylinder have normal vector \(\mathbf{k} \) and \(-\mathbf{k} \). Hence for these surfaces \(\nabla f \cdot \mathbf{n} = 0 \) since \(\nabla f \) has zero \(\mathbf{k} \) component. Therefore the contribution to the surface integral from the top and bottom is zero. Therefore, \(\iint_S \frac{\partial f}{\partial n} \, dA = 0 \) and Theorem 1 is verified.

Exercise 10.8.4.

Solution:

With \(f = x \) and \(g = y^2 + z^2 \), \(\nabla^2 g = 4 \), \(\nabla f = [1, 0, 0] \) and \(\nabla g = [0, 2y, 2z] \). Hence \(\nabla f \cdot \nabla g = 0 \) and \(f \nabla^2 g + \nabla f \cdot \nabla g = 4x \). Therefore,

\[
\iiint_T (f \nabla^2 g + \nabla f \cdot \nabla g) \, dV = \int_0^1 \int_0^2 \int_0^3 4x \, dz \, dy \, dx = \int_0^1 24x \, dx = 12.
\]

Green’s First Formula says that \(\iint_S \frac{\partial g}{\partial n} \, dA = 12 \). To verify this, note that \(S \) is the surface of the box \(T \) and hence is bounded by 6 planes parallel to the coordinate planes. By facing the box looking down the positive \(x \) axis toward the origin, we have the following.

For the front and back sides, \(x = 1 \), and \(n = \mathbf{i} \) or \(x = 0 \) and \(n = -\mathbf{i} \). In either case, \(\nabla g \cdot \mathbf{n} = [0, 2y, 2z] \cdot [\pm 1, 0, 0] = 0 \). Hence the contribution to the surface integral of the front and back sides of the box is zero.

For the left side, \(y = 0 \), \(\mathbf{n} = -\mathbf{j} \), so that \(\nabla g \cdot \mathbf{n} = -2y = 0 \), and for the bottom, \(z = 0 \), \(\mathbf{n} = -\mathbf{k} \), so that \(\nabla g \cdot \mathbf{n} = -2z = 0 \). Hence the contribution to the surface integral from the left side and the bottom is zero.
For the right side, \(y = 2, \ n = \mathbf{j} \) so that \(\nabla g \cdot \mathbf{n} = 2y = 4 \) and hence \(f(\nabla g \cdot \mathbf{n}) = 4x \). The contribution to the surface integral from this side is

\[
\int_0^1 \int_0^3 4x \, dz \, dx = \int_0^1 12x \, dx = 6.
\]

For the top of the box, \(z = 3, \ n = \mathbf{k} \) so that \(\nabla g \cdot \mathbf{n} = 2z = 6 \), and so \(f(\nabla g \cdot \mathbf{n}) = 6x \). The contribution to the surface integral from the top of the box is

\[
\int_0^1 \int_0^2 6x \, dy \, dx = \int_0^1 12x \, dx = 6.
\]

Therefore,

\[
\iint_S f \left(\frac{\partial g}{\partial n} \right) \, dA = 12
\]
as required.

Exercise 10.8.6.

Solution:

With \(f = x^4 \) and \(g = y^2 \), \(\nabla^2 f = 12x^2 \), and \(\nabla^2 g = 2 \). Hence \(\nabla^2 g - g \nabla^2 f = 2x^4 - 12x^2 y^2 \). Therefore,

\[
\iiint_T (f \nabla^2 g - g \nabla^2 f) \, dV = \int_0^1 \int_0^1 \int_0^1 2x^4 - 12x^2 y^2 \, dz \, dy \, dx
\]

\[
= \int_0^1 \int_0^1 2x^4 - 12x^2 y^2 \, dy \, dx
\]

\[
= \int_0^1 \left(2x^4 y - 4x^2 y^3 \right) \bigg|_0^1 \, dx
\]

\[
= \int_0^1 2x^4 - 4x^2 \, dx
\]

\[
= \frac{2}{5} x^5 - \frac{4}{3} x^3 \bigg|_0^1 = \frac{-14}{15}.
\]

Green’s Second Formula says that \(\iint_S \left(f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n} \right) \, dA = \frac{-14}{15} \). To verify this, note first that \(\nabla f = [4x^3, 0, 0] \), and \(\nabla g = [0, 2y, 0] \) and that \(S \) is the surface of the box bounded by 6 planes parallel to the coordinate planes. By facing the box looking down the positive \(x \) axis toward the origin, we have the following.

For the front side, \(x = 1, \) and \(n = \mathbf{i} \), so that

\[
f(\nabla g \cdot \mathbf{n}) - g(\nabla f \cdot \mathbf{n}) = (x^4)([0, 2y, 0] \cdot [1, 0, 0]) - (y^2)([4x^3, 0, 0] \cdot [1, 0, 0]) = 0 - (y^2)(4) = -4y^2.
\]

Hence the contribution from this side is

\[
\int_0^1 \int_0^1 -4y^2 \, dz \, dy = \int_0^1 -4y^2 \, dy = -\frac{4}{3}.
\]
For the back side, $x = 0$ and $n = -i$, so that
\[f(\nabla g \cdot n) - g(\nabla f \cdot n) = (x^4)([0, 2y, 0] \cdot [-1, 0, 0]) - (y^2)([4x^3, 0, 0] \cdot [-1, 0, 0]) = 0 - (y^2)(0) = 0 \]
and there is no contribution from this side.

For the left side, $y = 0$, $n = -j$, so that
\[f(\nabla g \cdot n) - g(\nabla f \cdot n) = (x^4)([0, 2y, 0] \cdot [0, -1, 0]) - (y^2)([4x^3, 0, 0] \cdot [0, -1, 0]) = 0. \]
and there is no contribution from this side. For the right side, $y = 1$ and $n = j$ so that
\[f(\nabla g \cdot n) - g(\nabla f \cdot n) = (x^4)([0, 2y, 0] \cdot [0, 1, 0]) - (y^2)([4x^3, 0, 0] \cdot [0, 1, 0]) = 2x^4y - 0 = 2x^4. \]
Hence the contribution from this side is
\[\int_0^1 \int_0^1 2x^4 \, dz \, dx = \int_0^1 2x^4 \, dx = \frac{2}{5}. \]

For the top and bottom, we have $z = 0$, $n = -k$ and $z = 1$, $n = k$. In both cases, $\nabla f \cdot n = [4x^3, 0, 0] \cdot [0, 0, \pm 1] = 0$ and $\nabla g \cdot n = [0, 2y, 0] \cdot [0, 0, \pm 1] = 0$, so there is no contribution to the integral from these sides.

\[\iint_S \left(f \frac{\partial g}{\partial n} - g \frac{\partial f}{\partial n} \right) \, dA = \frac{2}{5} - \frac{4}{3} = -\frac{14}{15} \]
as required.

Exercise 10.9.8.

Solution:

With $\mathbf{F} = [y^3, -x^3, 0],$
\[\text{curl} \mathbf{F} = \begin{vmatrix} i & j & k \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ y^3 & -x^3 & 0 \end{vmatrix} = (0)i - (0)j + (-3(x^2 + y^2))k. \]

For the surface $S: x^2 + y^2 \leq 1, z = 0$, the unit normal vector is $n = \pm k$. For this calculation, we will choose $n = k$. Hence $\mathbf{F} \cdot n = -3(x^2 + y^2)$. Parametrizing S using polar coordinates gives
\[\iint_S -3(x^2 + y^2) \, dA = \int_0^{2\pi} \int_0^1 -3r^2 \, r \, dr \, d\theta = \int_0^{2\pi} \int_0^1 -3r^3 \, dr \, d\theta = (2\pi) \left(-\frac{3}{4} \right) = -\frac{3\pi}{2}. \]
Exercise 10.9.10.

Solution:

In order to verify Stokes’s Theorem for the above example, we note that the boundary curve S for the surface S is the unit circle which can be parametrized by $\mathbf{r}(t) = [\cos t, \sin t, 0]$ $0 \leq t \leq 2\pi$, and that $\mathbf{r}'(t) = [-\sin t, \cos t, 0]$ and that $\mathbf{F}(\mathbf{r}(t)) = [\sin^3 t, -\cos^3 t, 0]$. Therefore,

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} [\sin^3 t, -\cos^3 t, 0] \cdot [-\sin t, \cos t, 0] \, dt$$

$$= \int_0^{2\pi} -(\sin^4 t + \cos^4 t) \, dt$$

$$= -\left(\frac{1}{4} \cos^3 t \sin t - \frac{1}{4} \sin^3 t \cos t + \frac{3}{4} t \right)_{0}^{2\pi}$$

$$= 3\pi$$

$$= \frac{3\pi}{2}$$

as required.