Answer the following question in the space provided. There is no need to justify your answers. This quiz is worth 5 points.

Compute the Jacobian of the transformation $x = \frac{u}{v}$, $y = \frac{v}{u+1}$. Be sure to fully simplify your answer.

$$X = \frac{U}{U} \rightarrow \frac{\partial x}{\partial u} = \frac{1}{V^2(u+1)^2}$$

$$Y = \frac{V}{U+1} \rightarrow \frac{\partial y}{\partial u} = \frac{1}{(u+1)^2} \frac{\partial y}{\partial v} = \frac{1}{u+1}$$

$$\frac{-U}{(u+1)^2} \frac{1}{u+1} = \frac{UV}{V^2(u+1)^2}$$

$$= \frac{U(u+1)-uV}{V^2(u+1)^2} = \frac{1}{V^2(u+1)^2}$$

MATH 213 – QUIZ 12 – 24 APRIL 2012

Answer the following question in the space provided. There is no need to justify your answers. This quiz is worth 5 points.

Compute the Jacobian of the transformation $x = e^{-u} \sin(v)$, $y = e^{u} \cos(v)$. Be sure to fully simplify your answer.

$$x = e^{u} \sin(u) \rightarrow \frac{\partial x}{\partial u} = -e^{u} \sin(u) \frac{\partial x}{\partial v} = e^{u} \cos(v)$$

$$y = e^{u} \cos(u) \rightarrow \frac{\partial y}{\partial u} = e^{u} \cos(v) \frac{\partial y}{\partial v} = -e^{u} \sin(v)$$

$$\int (u_{i}v) = \begin{vmatrix} -e^{-u} \sin(u) & e^{u} \cos(u) \\ e^{u} \cos(u) & -e^{u} \sin(u) \end{vmatrix}$$

$$= \sin^{2}(v) - \cos^{2}(v) /$$

MATH 213 - QUIZ 12 - 24 APRIL 2012

Answer the following question in the space provided. There is no need to justify your answers. This quiz is worth 5 points.

Compute the Jacobian of the transformation $x = uv^2$, $y = v(1 + u^2)$. Be sure to fully simplify your answer.